Skip to main content

Advertisement

Log in

Flexibility of thoracic spines under simultaneous multi-planar loading

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The corrective potential of two posterior-only destabilization procedures for scoliosis deformity was quantified under single and multi-planar loading using cadaveric spines.

Methods

Ten full-length human cadaveric thoracic spines were mounted in an 8-df servohydraulic load frame. Cyclic, pure moments were applied in: (1) flexion–extension, (2) lateral bending, (3) axial rotation, (4) flexion–extension with axial rotation, and (5) lateral bending with axial rotation at 0.5°/s, to ±4 Nm. Each specimen was tested intact, and again after nine en bloc bilateral total facetectomies, and one, two, three, and four levels of Ponte osteotomies. Motion was measured throughout loading using optical motion tracking.

Results

Under single-plane loading, facetectomies and Ponte osteotomies increased thoracic spine flexibility in all three planes. Compared to total facetectomies, higher per-level increases were seen following Ponte osteotomies, with increases in total range of motion (total ROM) of up to 2.7° in flexion–extension, 1.4° in lateral bending, and 3.1° in axial rotation following each osteotomy. Compared to the facetectomies, four supplemental osteotomies increased total ROM by 23 % in flexion (p < 0.01) and 8 % in axial rotation (p < 0.01). Increases in lateral bending were smaller. Under multi-planar loading, each Ponte osteotomy provided simultaneous increases of up to 1.4°, 1.6°, and 2.2° in flexion–extension, lateral bending, and axial rotation.

Conclusions

Ponte osteotomies provided higher per-level increases in ROM under single-plane loading than total facetectomies alone. Further, Ponte osteotomies provided simultaneous increase in all three planes under multi-planar loading. These results indicated that, to predict the correction potential of a surgical release, multi-planar testing may be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Diab MG, Franzone JM, Vitale MG (2011) The role of posterior spinal osteotomies in pediatric spinal deformity surgery: indications and operative technique. J Pediatr Orthop 31(1 Suppl):S88–S98

    Article  PubMed  Google Scholar 

  2. Geck MJ, Macagno A, Ponte A, Shufflebarger HL (2007) The Ponte procedure: posterior only treatment of Scheuermann’s kyphosis using segmental posterior shortening and pedicle screw instrumentation. J Spinal Disord Tech 20(8):586–593

    Article  PubMed  Google Scholar 

  3. Lehman RA Jr, Lenke LG, Keeler KA, Kim YJ, Buchowski JM, Cheh G, Kuhns CA, Bridwell KH (2008) Operative treatment of adolescent idiopathic scoliosis with posterior pedicle screw-only constructs: Minimum three-year follow-up of one hundred fourteen cases. Spine (Phila Pa 1976) 33(14):1598–1604

    Article  Google Scholar 

  4. Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER (2001) Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine (Phila Pa 1976) 26(18):2049–2057

    Article  CAS  Google Scholar 

  5. Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB (1995) Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine (Phila Pa 1976) 20(12):1399–1405

    Article  CAS  Google Scholar 

  6. Shah SA, Dhawale AA, Oda JE, Yorgova P, Neiss GI, Holmes L, Gabos PG (2013) Ponte osteotomies with pedicle screw instrumentation in the treatment of adolescent idiopathic scoliosis. Spine Deformity 1(3):196–204

    Article  PubMed  Google Scholar 

  7. Pizones J, Izquierdo E, Sanchez-Mariscal F, Alvarez P, Zuniga L, Gomez A (2010) Does wide posterior multiple level release improve the correction of adolescent idiopathic scoliosis curves? J Spinal Disord Tech 23(7):e24–e30

    Article  PubMed  Google Scholar 

  8. Shufflebarger HL, Clark CE (1998) Effect of wide posterior release on correction in adolescent idiopathic scoliosis. J Pediatr Orthop B 7(2):117–123

    Article  CAS  PubMed  Google Scholar 

  9. Shufflebarger HL, Geck MJ, Clark CE (2004) The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis: posterior shortening and pedicle screws. Spine 29(3):269–276 (discussion 276)

    Article  PubMed  Google Scholar 

  10. Halanski MA, Cassidy JA (2011) Do multilevel Ponte osteotomies in thoracic idiopathic scoliosis surgery improve curve correction and restore thoracic kyphosis? J Spinal Disord Tech 26(5):252–255

    Article  Google Scholar 

  11. Anderson AL, McIff TE, Asher MA, Burton DC, Glattes RC (2009) The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness. Spine 34(5):441–446

    Article  PubMed  Google Scholar 

  12. Feiertag MA, Horton WC, Norman JT, Proctor FC, Hutton WC (1995) The effect of different surgical releases on thoracic spinal motion. A cadaveric study. Spine 20(14):1604–1611

    Article  CAS  PubMed  Google Scholar 

  13. Horton WC, Kraiwattanapong C, Akamaru T, Minamide A, Park JS, Park MS, Hutton WC (2005) The role of the sternum, costosternal articulations, intervertebral disc, and facets in thoracic sagittal plane biomechanics: a comparison of three different sequences of surgical release. Spine 30(18):2014–2023

    Article  PubMed  Google Scholar 

  14. Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC (2002) An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 27(3):E64–E70

    Article  PubMed  Google Scholar 

  15. Panjabi MM, Hausfeld JN, White AA 3rd (1981) A biomechanical study of the ligamentous stability of the thoracic spine in man. Acta Orthop Scand 52(3):315–326

    Article  CAS  PubMed  Google Scholar 

  16. White AA 3rd, Hirsch C (1971) The significance of the vertebral posterior elements in the mechanics of the thoracic spine. Clin Orthop Relat Res 81:2–14

    Article  PubMed  Google Scholar 

  17. Sangiorgio SN, Borkowski SL, Bowen RE, Scaduto AA, Frost NL, Ebramzadeh E (2013) Quantification of increase in three-dimensional spine flexibility following sequential Ponte osteotomies in a cadaveric model. Spine Deformity 1(3):171–178

    Article  PubMed  Google Scholar 

  18. Rt Watkins, Watkins R 3rd, Williams L, Ahlbrand S, Garcia R, Karamanian A, Sharp L, Vo C, Hedman T (2005) Stability provided by the sternum and rib cage in the thoracic spine. Spine 30(11):1283–1286

    Article  Google Scholar 

  19. Deviren V, Acaroglu E, Lee J, Fujita M, Hu S, Lenke LG, Polly D Jr, Kuklo TR, O’Brien M, Brumfield D, Puttlitz CM (2005) Pedicle screw fixation of the thoracic spine: an in vitro biomechanical study on different configurations. Spine (Phila Pa 1976) 30(22):2530–2537

    Article  Google Scholar 

  20. Balabaud L, Gallard E, Skalli W, Lassau JP, Lavaste F, Steib JP (2002) Biomechanical evaluation of a bipedicular spinal fixation system: a comparative stiffness test. Spine (Phila Pa 1976) 27(17):1875–1880

    Article  Google Scholar 

  21. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt J, Berg DR, Ploeg H-L, Ploeg L (2009) Precision, repeatability, and accuracy of optotrak optical motion tracking systems. Int J Exp Comput Biomech 1(1):114–127

    Article  Google Scholar 

  23. Cho KJ, Bridwell KH, Lenke LG, Berra A, Baldus C (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30(18):2030–2037 (discussion 2038)

    Article  PubMed  Google Scholar 

  24. Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(3):343–349

    Article  Google Scholar 

  25. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. a conceptual framework. Spine (Phila Pa 1976) 13(10):1129–1134

    Article  CAS  Google Scholar 

  26. Chang MS, Lenke LG (2009) Vertebral derotation in adolescent idiopathic scoliosis. Op Tech Orthop 19(1):19–23

    Article  Google Scholar 

  27. Brasiliense LB, Lazaro BC, Reyes PM, Dogan S, Theodore N, Crawford NR (2011) Biomechanical contribution of the rib cage to thoracic stability. Spine (Phila Pa 1976) 36(26):E1686–E1693

    Article  Google Scholar 

  28. Andriacchi T, Schultz A, Belytschko T, Galante J (1974) A model for studies of mechanical interactions between the human spine and rib cage. J Biomech 7(6):497–507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Doctor’s Education and Research Fund, Orthopaedic Hospital.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia N. Sangiorgio.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkowski, S.L., Sangiorgio, S.N., Bowen, R.E. et al. Flexibility of thoracic spines under simultaneous multi-planar loading. Eur Spine J 26, 173–180 (2017). https://doi.org/10.1007/s00586-014-3499-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3499-0

Keywords

Navigation