Skip to main content
Log in

Magma–serpentinite interaction as the origin of diatremes: a case study from the Hyblean Plateau (southeastern Sicily)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Some diatremes formed in the Hyblean Plateau in a time span from 6.5 to 9.4 Ma, producing volcaniclastic deposits, which host deep-seated xenoliths. The origin of the explosive activity that has brecciated the magma and the country rocks is controversial, two are the prevalent models: phreatomagmatic and magmatic brecciation. We propose an alternative explanation based on the thermal and mechanical interaction of a rising basaltic magma with serpentinized mantle rocks, representing the main lithologies in the Permo–Triassic Hyblean basement. We suggest that magma–serpentinite interaction could have remobilized fluids from serpentinites that reached the overpressure necessary for the brecciation of country rocks. The possible depth of this interaction has been estimated considering variations of porosity and permeability at different depths in the Hyblean lithosphere. These properties have been taken into account in the dimensionless parameter V e (Jamtveit et al. in Physical geology of high-level magmatic systems, vol 234. Geological Society, London, Special Publications, London, pp 233–241, 2004), which reflects the relative rates of heat and fluid transport, since a high fluid flux is enhanced by a high boiling temperature of pore water raised by magma–rock heat exchange. V e remains less than 1 up to a depth of 7 km, corresponding to the average thickness of the sedimentary-volcanic sequence, characterized by a high permeability (k = 10−12–10−14 m2) that inhibits fluid overpressure built up, in contrast to both phreatomagmatic and magmatic models. At deeper levels (k ~ 10−19 m2), from 8 km downward, the value of V e is greater than 1. Therefore, we propose that the dehydration of serpentinites, upon heating by hot basaltic magma, would have liberated huge amounts of fluids whose accumulation at an average depth of 8 km beneath the impermeable serpentinized level induced supercritical fluid overpressure, strong enough to exceed the lithospheric pressure. Fluid overpressure caused the opening of fractures in the overlying permeable upper crust, triggering the energetic fluid expansion and hence the brecciation of country rocks. Finally, we suppose that aforementioned conditions for supercritical fluid overpressure could have been gained in other areas of the Hyblean region in coincidence with various Mesozoic volcanic events, even though older diatremes may have been obliterated by subsequent sedimentary cycles and volcanic events, as well as in serpentinite diatremes in the Navajo Volcanic Field (Colorado Plateau, SW USA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarnes I, Svensen H, Polteau S, Planke S (2011) Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chem Geol 281:181–194

    Article  Google Scholar 

  • Aloisi M, Mattia M, Ferlito C, Palano M, Bruno V, Cannavò F (2011) Imaging the multi-level magma reservoir at Mt. Etna volcano (Italy). Geophys Res Lett. doi:10.1029/2011GL048488

    Google Scholar 

  • Anselmetti FS, Eberli GP (1997) Sonic velocity in carbonate sediments and rocks. In: Palaz I, Marfurt KJ (eds) Carbonate seismology, SEG geophysical developments series, vol 6, pp 53–74

  • Ballotti DM, Christensen NI, Becker K (1992) Seismic properties of serpentinized peridotites from the Marianna forearc. In: Fryer P et al (eds) Bonin/Marianna region sites 778–786, Proceedings of ocean drilling program, scientific results, vol 125, pp 581–584

  • Bianchi F, Carbone S, Grasso M, Invernizzi G, Lentini F, Longaretti G, Merlini S, Mostardini F (1987) Sicilia orientale: profilo geologico Nebrodi-Iblei. Mem Soc Geol It 38:429–458

    Google Scholar 

  • Brancato A (2005) Reconstruction of seismogenic structures by high-precise relative location of microearthquake hypocenters occurred in southeastern Sicily (Italy). Ph.D. thesis, Dept. of Earth Science, University of Naples “Federico II”, Italy

  • Brancato A, Hole JA, Gresta S, Beale JN (2009) Determination of seismogenic structures in southeastern Sicily (Italy) by high-precision relative relocation of microearthquakes. Bull Seismol Soc Am 99:1921–1936

    Article  Google Scholar 

  • Bröll D, Kaul C, Krämer A, Krammer P, Richter T, Jung M, Vogel H, Zehner P (1999) Chemistry in supercritical water. Angew Chem Int Ed 38:2998–3014

    Article  Google Scholar 

  • Calvari S, Tanner LH (2011) The Miocene Costa Giardini diatreme, Iblean Mountains, southern Italy: model for maar-diatreme formation on a submerged carbonate platform. Bull Volcanol 73:557–576

    Article  Google Scholar 

  • Carbone S, Lentini F (1981) Caratteri deposizionali delle vulcaniti del Miocene superiore negli Iblei (Sicilia Sud-Orientale). Geol Rom 20:79–101

    Google Scholar 

  • Carbone S, Grasso M, Lentini F (1984) Carta Geologica della Sicilia sud-orientale, scale 1:100.000, S.EL.CA, Firenze

  • Carbone S, Grasso M, Lentini F (1986) Carta Geologica del settore Nord-Orientale Ibleo (Sicilia S.E.), scale 1:50.000, S.EL.CA, Firenze

  • Carbone S, Grasso M, Lentini F (1987) Lineamenti geologici del Plateau Ibleo (Sicilia S.E.). Presentazione delle carte geologiche della Sicilia Sud-Orientale. Mem Soc Geol It 38:127–135

    Google Scholar 

  • Carbone S, Scribano V, Manuella FC (2014) Formation and accumulation of Messinian evaporites in the Caltanissetta Basin (Sicily) by “supercritical out-salting”: reasons for a Tethys serpentinite connection. Rend Online Soc Geol It 31(1):149

    Google Scholar 

  • Carbone S, Pistorio A, Manuella FC, Scribano V (2015) The Late Miocene diatremes of northern Hyblean Mts. (SE Sicily): the geosite of Costa Giardini (Sortino-Syracuse). Congress “Inside and Outside the Mountain: Information and excursions days on Geology-Karst and Palaeontology”, Custonaci (TP) 23rd–26th April 2015, pp 51–53

  • Carlson RL (2001) The abundance of ultramafic rocks in Atlantic Ocean crust. Geophys J Int 144:37–48

    Article  Google Scholar 

  • Castellarin A (1966) I tufi eocenici a struttura caotica dei dintorni di Rovereto (Trentino Meridionale). Il problema delle tufiti. Giorn Geol 32:417–440

    Google Scholar 

  • Castellarin A, Piccoli G (1966) I vulcani eocenici dei dintorni di Rovereto. Giorn Geol 33:292–365

    Google Scholar 

  • Ciliberto E, Crisafulli C, Manuella FC, Samperi F, Scirè S, Scribano V, Viccaro M, Viscuso E (2009) Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diatremes (Sicily): genesis in a serpentinite hydrothermal system. Chem Geol 258:258–268

    Google Scholar 

  • Domenico SN (1984) Rock lithology and porosity determination from shear and compressional wave velocity. Geophysics 49:1188–1195

    Article  Google Scholar 

  • Ehrenberg SN, Griffin WL (1979) Garnet granulite and associated xenoliths in minette and serpentinite diatremes of the Colorado Plateau. Geology 7:483–487

    Article  Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506

    Article  Google Scholar 

  • Ferlito C, Lanzafame G (2010) The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos 119:642–650

    Article  Google Scholar 

  • Ferlito C, Coltorti M, Lanzafame G, Giacomoni PP (2014) The volatile flushing triggers eruptions at open conduit volcanoes: evidence from Mount Etna volcano (Italy). Lithos 184–187:447–450

    Article  Google Scholar 

  • Ferrara V (2011) Idrogeologia. In: Carbone S (ed) Note illustrative della carta geologica d’Italia alla scala 1:50.000, Foglio 641 Augusta. Istituto Superiore per la Protezione e la Ricerca Ambientale-S.EL.CA., Firenze, pp 147–150

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368

    Article  Google Scholar 

  • Galland O, Gisler GR, Haug ØT (2014) Morphology and dynamics of explosive vents through cohesive rock formations. J Geophys Res Solid Earth 119(6):4708–4728. doi:10.1002/2014JB011050

    Article  Google Scholar 

  • Giampiccolo E, Gresta S, Ganci G (2003) Attenuation of body waves in Southeastern Sicily (Italy). Phys Earth Planet Int 135:267–279

    Article  Google Scholar 

  • Grasso M, Lentini F (1982) Sedimentary and tectonic evolution of the eastern Hyblean Plateau (Southeastern Sicily) during late Cretaceous to Quaternary time. Palaeogeogr Palaeoclimatol Palaeoecol 39:261–280

    Article  Google Scholar 

  • Grasso M, Lentini F, Pedley HM (1982) Late Tortonian–Lower Messinian (Miocene palaeogeography of SE Sicily: information from two new formations of the Sortino Group. Sediment Geol 32:279–300

    Article  Google Scholar 

  • Hack AC, Thompson AB, Aerts M (2007) Phase relations involving hydrous silicate melts, aqueous fluids, and minerals. In: Liesbcher A, Heinrich CA (eds) Fluid–fluid interactions. Rev Mineral Geochem, vol 65, pp 129–185

  • Henderson N, Flores E, Sampaio M, Freitas L, Platt GM (2005) Supercritical fluid flow in porous media: modeling and simulation. Chem Eng Sci 60:1797–1808

    Article  Google Scholar 

  • Hess HH, Otalora G (1964) Mineralogical and chemical composition of the Mayaguez serpentinite cores. In: Burk CA (ed) A study of serpentinite: the AMSOC core hole near Mayaguez, Puerto Rico. National Academy of Sciences, National Research Committee, Washington, pp 152–168

  • Hovland M, Fichler C, Rueslåtten H, Johnsen HK (2006) Deep-rooted piercement structures in deep sedimentary basins—manifestations of supercritical water generation at depth? J Geochem Explor 89:157–160

    Article  Google Scholar 

  • Hovland M, Rueslåtten H, Johnsen HK (2014) Buried hydrothermal systems: the potential role of supercritical water, “ScriW”, in various geological processes and occurrences in the sub-surface. Am J Anal Chem 5:128–139

    Article  Google Scholar 

  • Jamtveit B, Svensen H, Podladchikov YY, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society of London, Special Publications, London, pp 233–241

  • Kelemen PB et al (2004) Drilling mantle peridotite along the Mid-Atlantic Ridge from 14° to 16°N. In: Proceedings of the ocean drilling program, initial reports, Sites 1268–1274

  • Kurszlaukis S, Lorenz V (2008) Formation of “Tuffisitic Kimberlites” by phreatomagmatic processes. J Volcanol Geotherm Res 174:68–80

    Article  Google Scholar 

  • Lentini F, Carbone S (2014) Geologia della Sicilia, con i contributi di Branca S (vulcanico) e Messina A (basamenti cristallini). ISPRA, Memorie descrittive della carta geologica d’Italia 95:7–414

  • Llana-Fúnez S, Brodie KH, Rutter EH, Arkwright JC (2007) Experimental dehydration kinetics of serpentinite using pore volumometry. J Metamorph Geol 25:423–438

    Article  Google Scholar 

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:4–32

    Article  Google Scholar 

  • Manuella FC (2011) Vein mineral assemblage in partially serpentinized peridotite xenoliths from Hyblean Plateau (Southeastern Sicily, Italy). Period Mineral 80:247–266

    Google Scholar 

  • Manuella FC, Carbone S, Barreca G (2012) Origin of saponite-rich clays in a fossil serpentinite-hosted hydrothermal system in the crustal basement of the Hyblean Plateau (Sicily, Italy). Clays Clay Miner 60:18–31

    Article  Google Scholar 

  • Manuella FC, Brancato A, Carbone S, Gresta S (2013) A crustal-upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data. J Geodyn 66:92–102

    Article  Google Scholar 

  • Manuella FC, Brancato A, Carbone S, Gresta S (2014) Reply to “Comments on the paper “A crustal-upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data” by Manuella et al. (2013)”. J Geodyn 73:81–82

    Article  Google Scholar 

  • Manuella FC, Scribano S, Carbone S, Brancato A (2015) The Hyblean xenolith suite (Sicily): an unexpected legacy of the Ionian–Tethys realm. Int J Earth Sci 104:1317–1336

    Article  Google Scholar 

  • McGetchin TR, Silver LT (1970) Compositional relations in minerals from kimberlite and related rocks in the Moses rock dike, San Juan county, Utah. Am Mineral 55:1738–1771

    Google Scholar 

  • McGetchin TR, Nikhanj YS, Chodos AA (1973) Carbonatite–kimberlite relations in the Cane Valley diatreme, San Juan County, Utah. J Geophys Res 78:1854–1869

    Article  Google Scholar 

  • Miller DJ, Christensen NI (1997) Seismic velocities of lower crustal and upper mantle rocks from the slow spreading Mid-Atlantic Ridge, south of the Kane Transform zone (MARK). Proc Ocean Drill Prog Part B Sci Res 153:437–454

    Google Scholar 

  • Miller SA, van der Zee W, Olgaard DL, Connolly JAD (2003) A fluid-pressure feedback model of dehydration reactions: experiments, modelling, and application to subduction zones. Tectonophysics 370:241–251

    Article  Google Scholar 

  • Minshull TA, Muller MR, Robinson CJ, White RS, Bickle MJ (1998) Is the oceanic Moho a serpentinization front? In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record, vol 148. Geological Society, London, Special Publications, London, pp 71–80

  • Newman S, Lowerstern JB (2002) VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for excel. Comp Geosci 28:597–604

    Article  Google Scholar 

  • O’Hara MJ, Mercy LP (1966) Eclogite, peridotite and pyrope from the Navajo Country, Arizona and New Mexico. Am Mineral 51:336–352

    Google Scholar 

  • Patacca E, Scandone P, Giunta G, Liguori V (1979) Mesozoic paleotectonic evolution of the Ragusa zone (southeastern Sicily). Geol Romana 18:331–369

    Google Scholar 

  • Peslier AH, Woodland AB, Wolff JA (2008) Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim Cosmochim Acta 72:2711–2722

    Article  Google Scholar 

  • Planke S, Rasmussen T, Rey SS, Myklebust R (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: Doré AG, Vining BA (eds) Petroleum geology: North-West Europe and global perspectives. Proceedings of the 6th petroleum geology conference, pp 833–844

  • Punturo R, Scribano V (1997) Dati geochimici e petrografici su xenoliti di clinopirossenite a grana ultragrossa e websteriti nelle vulcanoclastiti mioceniche dell’Alta Valle Guffari (Monti Iblei, Sicilia). Mineral Petrogr Acta 40:95–116

  • Roden MF (1981) Origin of coexisting minette and ultramafic breccia, Navajo Volcanic Field. Contrib Mineral Petrol 77:195–206

    Article  Google Scholar 

  • Rutter EH, Llana-Fúnez S, Brodie KH (2009) Dehydration and deformation of intact cylinders of serpentinite. J Struct Geol 31:29–43

    Article  Google Scholar 

  • Sapienza G, Scribano V (2000) Distribution and representative whole-rock chemistry of deep-seated xenoliths from the Iblean Plateau, southeastern Sicily, Italy. Per Mineral 69:185–204

    Google Scholar 

  • Sapienza G, Ioppolo S, Scribano V, Calvari S (2000) Dati petrografici su una mela-nefelinite ad hauyna degli Iblei (Sicilia sud-orientale). Miner Petrogr Acta 43:65–74

    Google Scholar 

  • Schmincke H-U, Behncke B, Grasso M, Raffi S (1997) Evolution of the northwestern Iblean Mountains, Sicily: uplift, Plicocene/Pleistocene sea-level changes, paleoenvironment, and volcanism. Geol Rundsch 86:637–669

    Article  Google Scholar 

  • Scirè S, Ciliberto E, Crisafulli C, Scribano V, Bellatreccia F, Della Ventura G (2011) Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily. Lithos 125:956–968

    Article  Google Scholar 

  • Scribano V (1986) The harzburgite xenoliths in a Quaternary basanitoid lava near Scordia (Hyblean Plateau, Sicily). Rend Soc Ital Miner Petrol 41:245–255

    Google Scholar 

  • Scribano V (1987) The ultramafic and mafic nodule suite in a tuff-breccia pipe from Cozzo Molino (Hyblean Plateau, SE Sicily). Rend Soc Ital Miner Petrol 42:203–217

    Google Scholar 

  • Scribano V (2011) Petrografia e geochimica dei prodotti vulcanici. In: Carbone S (ed) Note illustrative della Carta Geologica d’Italia alla scala 1:50.000, Foglio 641-Augusta, ISPRA, Firenze, pp 73–87

  • Scribano V, Viccaro M (2014) En-route formation of highly silica-undersaturated melts through interaction between ascending basalt and serpentinite-related saline brines: inference from Hyblean Cenozoic nephelinites, Sicily. Misc INGV 25:107

    Google Scholar 

  • Scribano V, Ioppolo S, Censi P (2006a) Chlorite/smectite-alkali feldspar metasomatica xenoliths from Hyblean Miocenic diatremes (Sicily, Italy): evidence for early interaction between hydrothermal brines and ultramafic/mafic rocks at crustal levels. Ofioliti 31:161–171

    Google Scholar 

  • Scribano V, Sapienza GT, Braga R, Morten L (2006b) Gabbroic xenoliths in tuff-breccia pipes from the Hyblean Plateau: insights into the nature and composition of the lower crust underneath Southeastern Sicily, Italy. Miner Petrol 86:63–88

    Article  Google Scholar 

  • Scribano V, Carbone S, Manuella FC (2007) Diatreme eruption probably related to explosive interaction of rising magma with serpentinite diapirsin the shallow crust (Carlentini Formation, Hyblean area, Sicily): a xenolith perspective. Epitome 2:130–131

    Google Scholar 

  • Scribano V, Viccaro M, Cristofolini R, Ottolini L (2009) Metasomatic events recorded in ultramafic xenoliths from the Hyblean area, Southeastern Sicily, Italy. Miner Petrol 95:235–250

    Article  Google Scholar 

  • Seipold U, Schilling FR (2003) Heat transport in serpentinites. Tectonophysics 370:147–162

    Article  Google Scholar 

  • Sharkov EV (2012) Cyclic development of axial parts of slow-spreading ridges: evidence from Sierra Leone Area, the Mid-Atlantic Ridge, 5–7°N. In: Sharkov EV (ed) Tectonics—recent advances. InTech. doi: 10.5772/39372. http://www.intechopen.com/books/tectonics-recent-advances/cyclic-development-of-axial-parts-of-slow-spreading-ridges-evidence-from-sierra-leone-area-the-mid-a

  • Simakov S, Kouchi A, Mel′nik NN, Scribano V, Kimura Y, Hama T, Suzuki N, Saito H, Yoshizawa T (2015) Nanodiamond finding in the Hyblean shallow mantle xenoliths. Sci Rep. doi:10.1038/srep10765

    Google Scholar 

  • Smith D (2010) Antigorite peridotite, metaserpentinite, and other inclusions within diatremes on the Colorado Plateau, SW USA: implications for the mantle Wedge during low-angle subduction. J Petrol 51:1355–1379

    Article  Google Scholar 

  • Smith D (2013) Olivine thermometry and source constraints for mantle fragments in the Navajo Volcanic Field, Colorado Plateau, southwest United States: implications for the mantle wedge. Geochem Geophys Geosyst 14:693–711

    Article  Google Scholar 

  • Smith D, Levy S (1976) Petrology of the Green Knobs diatreme and implications for the upper mantle below the Colorado Plateau. Earth Planet Sci Lett 29:107–125

    Article  Google Scholar 

  • Stroncik N, Schmincke H-U (2001) Evolution of palagonite: crystallization, chemical changes, and element budget. Geochem Geophys Geosyst 2. doi:10.1029/2000GC000102

  • Suiting I, Schmincke H-U (2009) Internal vs. external forcing in shallow marine diatreme formation: a case study from the Iblean Mountains (SE-Sicily, Central Mediterranean). J Volcanol Geotherm Res 186:361–378

    Article  Google Scholar 

  • Suiting I, Schmincke H-U (2010) Iblean diatremes 2: shallow marine volcanism in the Central Mediterranean at the onset of the Messinian Salinity Crisis (Iblean Mountains, SE-Sicily)—a multidisciplinary approach. Int J Earth Sci 99:1917–1940

    Article  Google Scholar 

  • Suiting I, Schmincke H-U (2012) Iblean diatremes 3: volcanic processes on a Miocene carbonate platform (Iblean Mountains, SE-Sicily): a comparison of deep vs. shallow marine eruptive processes. Bull Volcanol 74:207–230

    Article  Google Scholar 

  • Svensen H, Jamtveit B, Planke S, Chevallier L (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J Geol Soc Lond 163:671–682

    Article  Google Scholar 

  • Thiéry R, Mercury L (2009) Explosive properties of water in volcanic and hydrothermal systems. J Geophys Res. doi:10.1029/2008JB005742

    Google Scholar 

  • Tonarini S, D’Orazio M, Armienti P, Innocenti F, Scribano V (1996) Geochemical features of eastern Sicily lithosphere as probed by Hyblean xenoliths and lavas. Eur J Mineral 8:1153–1173

    Article  Google Scholar 

  • Trumpy E, Donato A, Gianelli G, Gola G, Minissale A, Montanari D, Santilano A, Manzella A (2015) Data integration and favourability maps for exploring geothermal systems in Sicily, southern Italy. Geothermics 56:1–16

    Article  Google Scholar 

  • Vai GB (1994) Crustal evolution and basement elements in the Italian area: palaeogeography and characterization. Boll Geofis Teor Appl 36:411–434

    Google Scholar 

  • Vai GB (2003) Development of the palaeogeography of Pangaea from Late Carboniferous to Early Permian. Palaeogeogr Palaeoclimatol Palaeoecol 196:125–155

    Article  Google Scholar 

  • Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40:1111–1114

    Article  Google Scholar 

  • Viti C (2010) Serpentine minerals discrimination by thermal analysis. Am Mineral 95:631–638

    Article  Google Scholar 

  • Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535

    Article  Google Scholar 

  • Waples DW, Waples JS (2004) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat Resour Res 13:97–122

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatremes volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Article  Google Scholar 

  • Wilson L, Head JW III (2007) An integrated model of kimberlite ascent and eruption. Nature 447:53–57

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge many thanks to W.-C. Dullo for the careful editorial managing and to A. Freundt and an anonymous reviewer for their useful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Carmelo Manuella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuella, F.C., Carbone, S., Ferlito, C. et al. Magma–serpentinite interaction as the origin of diatremes: a case study from the Hyblean Plateau (southeastern Sicily). Int J Earth Sci (Geol Rundsch) 105, 1371–1385 (2016). https://doi.org/10.1007/s00531-015-1257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1257-0

Keywords

Navigation