Skip to main content
Log in

Characterization of n-rectifiability in terms of Jones’ square function: part I

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

A Correction to this article was published on 10 January 2019

Abstract

In this paper it is shown that if \(\mu \) is a finite Radon measure in \({\mathbb R}^d\) which is n-rectifiable and \(1\le p\le 2\), then

$$\begin{aligned} \displaystyle \int _0^\infty \beta _{\mu ,p}^n(x,r)^2\,\frac{dr}{r}<\infty \quad \mathrm{for}\,\, \mu {\text {-}}\mathrm{a.e.}\,\, x\in {\mathbb R}^d, \end{aligned}$$

where

$$\begin{aligned} \displaystyle \beta _{\mu ,p}^n(x,r) = \inf _L \left( \frac{1}{r^n} \int _{\bar{B}(x,r)} \left( \frac{\mathrm{dist}(y,L)}{r}\right) ^p\,d\mu (y)\right) ^{1/p}, \end{aligned}$$

with the infimum taken over all the n-planes \(L\subset {\mathbb R}^d\). The \(\beta _{\mu ,p}^n\) coefficients are the same as the ones considered by David and Semmes in the setting of the so called uniform n-rectifiability. An analogous necessary condition for n-rectifiability in terms of other coefficients involving some variant of the Wasserstein distance \(W_1\) is also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Azzam, J., David, G., Toro, T.: Wasserstein distance and the rectifiability of doubling measures: part I. Math. Ann (2014). arXiv:1408.6645

  2. Azzam, J., David, G., Toro, T.: Wasserstein distance and the rectifiability of doubling measures: part II (2014). arXiv:1411.2512

  3. Azzam, J., Tolsa, X.: Characterization of n-rectifiability in terms of the Jones’ square function: part II. Geom. Funct. Anal. (2015). arXiv:1501.01572

  4. Badger, M., Schul, R.: Multiscale analysis of 1-rectifiable measures: necessary conditions. Math. Ann, 361(3–4), 1055–1072 (2015)

  5. Badger, M., Schul, R.: Two sufficient conditions for rectifiable measures. Proc. Amer. Math. Soc. (2014). arXiv:1412.8357

  6. Chousionis, V., Garnett, J., Le, T., Tolsa, X.: Square functions and uniform rectifiability. Trans. Am. Math. Soc. (2014). arXiv:1401.3382

  7. David, G.: Unrectifiable \(1\)-sets have vanishing analytic capacity. Revista Mat. Iberoamericana 14(2), 369–479 (1998)

    Article  MATH  Google Scholar 

  8. David, G., Semmes, S.: Singular integrals and rectifiable sets in \(\mathbb{R}^{n}\): beyond lipschitz graphs. Astérisque 193, 152 (1991)

  9. David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence, RI (1993)

    Book  Google Scholar 

  10. Jones, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102(1), 1–15 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Léger, J.C.: Menger curvature and rectifiability. Ann. Math. 149, 831–869 (1999)

    Article  MATH  Google Scholar 

  12. Lerman, G.: Quantifying curvelike structures of measures by using \(L^2\) Jones quantities. Commun. Pure Appl. Math. 56(9), 1294–1365 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Stud. Adv. Math., vol. 44. Cambridge Univ. Press, Cambridge (1995)

    Book  Google Scholar 

  14. Mas, A., Tolsa, X.: Variation for Riesz transforms and uniform rectifiability. J. Eur. Math. Soc. 16(11), 2267–2321 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nazarov, F., Tolsa, X., Volberg, A.: On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1. Acta Math. 213(2), 237–321 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Okikiolu, K.: Characterization of subsets of rectifiable curves in \({R}^{n}\). J. London Math. Soc. 46(2), 336–348 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pajot, H.: Conditions quantitatives de rectifiabilité. Bulletin de la Société Mathématique de France 125, 1–39 (1997)

    MathSciNet  Google Scholar 

  18. Tolsa, X.: Uniform rectifiability, Calderón-Zygmund operators with odd kernel, and quasiorthogonality. Proc. London Math. Soc. 98(2), 393–426 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tolsa, X.: Principal values for Riesz transforms and rectifiability. J. Funct. Anal. 254(7), 1811–1863 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tolsa, X.: Analytic Capacity, the Cauchy Transform, and Non-Homogeneous Calderón-Zygmund Theory. Progress in Mathematics, vol. 307. Birkhäuser Verlag, Basel (2014)

    Book  Google Scholar 

  21. Tolsa, X., Toro, T.: Rectifiability via a square function and Preiss’ theorem. Int. Math. Res. Notices 2015(13), 4638–4662 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Tolsa.

Additional information

Communicated by L. Ambrosio.

The author was supported by the ERC Grant 320501 of the European Research Council (FP7/2007-2013) and also partially supported by the Grants 2014-SGR-75 (Catalonia), MTM2013-44304-P (Spain), and by the Marie Curie ITN MAnET (FP7-607647).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolsa, X. Characterization of n-rectifiability in terms of Jones’ square function: part I. Calc. Var. 54, 3643–3665 (2015). https://doi.org/10.1007/s00526-015-0917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0917-z

Mathematics Subject Classification

Navigation