Skip to main content

Advertisement

Log in

Radial symmetry and symmetry breaking for some interpolation inequalities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We analyze the radial symmetry of extremals for a class of interpolation inequalities known as Caffarelli–Kohn–Nirenberg inequalities, and for a class of weighted logarithmic Hardy inequalities which appear as limiting cases of the first ones. In both classes we show that there exists a continuous surface that splits the set of admissible parameters into a region where extremals are symmetric and a region where symmetry breaking occurs. In previous results, the symmetry breaking region was identified by showing the linear instability of the radial extremals. Here we prove that symmetry can be broken even within the set of parameters where radial extremals correspond to local minima for the variational problem associated with the inequality. For interpolation inequalities, such a symmetry breaking phenomenon is entirely new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli L., Kohn R., Nirenberg L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Catrina F., Wang Z.-Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chou K.S., Chu C.W.: On the best constant for a weighted Sobolev-Hardy inequality. J. London Math. Soc. (2) 48, 137–151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Del Pino M., Dolbeault J., Filippas S., Tertikas A.: A logarithmic Hardy inequality. J. Funct. Anal. 259, 2045–2072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dolbeault, J., Esteban, M.J.: Extremal functions for Caffarelli–Kohn–Nirenberg and logarithmic Hardy inequalities. Preprint (2010). http://hal.archives-ouvertes.fr/hal-00496936/fr/

  6. Dolbeault J., Esteban M.J., Tarantello G.: The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli–Kohn–Nirenberg inequalities, in two space dimensions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7(2), 313–341 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Dolbeault J., Esteban M.J., Loss M., Tarantello G.: On the symmetry of extremals for the Caffarelli–Kohn–Nirenberg inequalities. Adv. Nonlinear Stud. 9, 713–726 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Esteban M.J., Ramaswamy M.: Nonexistence result for positive solutions of nonlinear elliptic degenerate problems. Nonlinear Anal. 26, 835–843 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Felli V., Schneider M.: Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type. J. Differ. Equ. 191, 121–142 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({{\mathbb R}^{n}}\). In: Mathematical Analysis and Applications, Part A, vol. 7 of Adv. in Math. Suppl. Stud., pp. 369–402. Academic Press, New York (1981)

  11. Horiuchi T.: Best constant in weighted Sobolev inequality with weights being powers of distance from the origin. J. Inequal. Appl. 1, 275–292 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, C.-S., Wang, Z.-Q.: Erratum to: “Symmetry of extremal functions for the Caffarelli–Kohn–Nirenberg inequalities” [Proc. Amer. Math. Soc. 132 (2004), no. 6, 1685–1691]. Proc. Am. Math. Soc. 132, 2183 (2004) (electronic)

  13. Lin, C.-S., Wang, Z.-Q.: Symmetry of extremal functions for the Caffarrelli–Kohn–Nirenberg inequalities. Proc. Am. Math. Soc. 132, 1685–1691 (2004) (electronic)

    Google Scholar 

  14. Smets D., Willem M.: Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Differ. Equ. 18, 57–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Weissler F.B.: Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc. 237, 255–269 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dolbeault.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolbeault, J., Esteban, M.J., Tarantello, G. et al. Radial symmetry and symmetry breaking for some interpolation inequalities. Calc. Var. 42, 461–485 (2011). https://doi.org/10.1007/s00526-011-0394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0394-y

Mathematics Subject Classification (2000)

Navigation