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Abstract
With only global image-level annotations, weakly supervised learning of deep convolutional neural networks has shown

enough capacity in classification and localization but lack of ability to present the detection explicitly. In this work, we

propose a novel spatial division network, which is applied to detect bounding boxes only with weak supervision. The

essence of our model is two innovative differentiable modules, determination network and parameterized division, which

perform the spatial division in feature maps of classification networks. After training, the learned parameters of the spatial

division would correspond to a set of predicted bounding box coordinates. To demonstrate the effectiveness of our model

for multi-label classification and weakly supervised detection, we conduct extensive experiments on the multi-MNIST

dataset. Experimental results show our spatial division networks can (1) help improve the accuracy of multi-label clas-

sification, (2) implement in an end-to-end way only with the image-level annotations, and (3) output accurate bounding box

coordinate, thereby achieving multi-digits detection.

Keywords Deep learning � Learning systems � Convolutional neural networks � Predictive models

1 Introduction

Visual detection with deep convolutional neural networks

(DCNNs) has made significant progress in the last decade

[19, 32, 33]. These successes are not only due to the effi-

cacious spatial feature extraction capability of DCNNs but

the increasing number of large annotated image datasets.

Adequate annotation (ground truth bounding boxes) for

training is necessary for fully supervised methods to get

state-of-art detection results. However, annotating these

full supervision labels [42, 43] is labor intensive and time-

consuming, motivating us to explore the weakly supervised

detection (WSD) method with DCNNs. Compared to the

fully supervised method, weakly supervised detection only

acquires images with image-level annotations indicating

whether an object of a specified category is present in an

image or not [22]. Besides, WSD is like the visual system

of humans, which first selecting locations of related regions

in the ‘‘detection’’ stage and then determining the target in

the ‘‘identification’’ stage [20].

Although this learning framework serves to be more

economical and interpret, the outcome tends to be some-

what backward compared to fully supervised learning. The

fundamental challenge of weakly supervised detection is

that the predict bounding boxes have no corresponding

ground truth at the same supervision level. Current

approaches usually adopt two ideas to address this issue:

(1) Instead of predicting bounding boxes, the model selects

the highest-scoring candidate from the region proposals as

the detection result [5, 38, 39]. (2) The model iteratively

generates pseudo-ground truth bounding boxes and learns

until it reaches a particular convergence condition

[2, 16, 29]. The former could be trained end-to-end but

requires region proposals prior. The latter does not require

region proposals prior but cannot be trained end-to-end.

Therefore, existing models in both cases cannot perform

weakly supervised detection in an end-to-end learning

manner without region proposals prior.

In this paper, we propose a spatial division network,

termed SDN, to perform weakly supervised detection in an

end-to-end learning manner. Our proposed WSD frame-

work starts from the feature extraction part of a
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conventional CNNs and is extended by two differentiable

modules to reason about the location and size of the interest

object only via the global image-level label without any

region proposals prior.

To overcome the problem that there is no corresponding

ground truth in the prediction bounding box, we propose a

spatial division representation, as shown in Fig. 1. The

spatial division separates the entire two-dimensional space

of the image into two parts: the space containing the object

and the background space. A matrix can represent it. A

zero in the matrix indicates the background, and a nonzero

value indicates the part that contains the object. In this

way, the bounding box regression in full supervision is

transformed into mutual constraint learning between dif-

ferent spatial divisions.

Given an input image, our SDN first extracts mid-level

image features by convolution and pooling operations.

Next, these features are copied and branched into two

streams. The first stream handles significant intra-class

variations through a multiple instance learning framework.

The endpoint of this stream is the category-dependent

activation maps (CAMs), which denote confidence score

maps to discriminate image regions for classification.

Simultaneously, the second stream flows into a differen-

tiable module named determination network, which

designed to estimate and output the bounding box param-

eter. After that, we introduce another differentiable module

named parameterized division, which can transform the

bounding box parameter into Shadow Activation Maps

(SAMs). In Fig. 1, as the name suggests, SAMs are like the

’’shadow’’ of CAMs, that is, the values at each identical

position of them tend to be consistent.

During the training phase, in addition to employing

cross-entropy loss for multi-label recognition, we further

introduce mutual constraint loss to measure the similarity

of SAMs and CAMs. There are two goals for our model

training: (1) The classifier placed follow CAMs could

achieve excellent results; (2) CAMs and SAMs are as

similar as possible.

SDN is first proposed in our ISKE paper [18] and both

theory and experiment part is promoted in this full version

paper. The main contributions of this paper are summarized

as follows:

1. We propose spatial division networks, a new learning

framework for weakly supervised detection, which is

trained in an end-to-end pipeline and does not rely on

the candidate bounding box proposal.

2. We design two differentiable modules (determination

network and parameterized spatial division) that can

learn and generate bounding box solely through image-

level annotations by mutual constraint learning of

CAMs and SAMs.

3. Based on the MNIST dataset, we created a new dataset

multi-MNIST for multi-label classification and weakly

supervised detection.

4. We present a detailed experimental evaluation using

multi-MNIST datasets. Our proposed method achieves

superior performance over previous competing

approaches, which highlights the importance of mutual

constraint learning for weakly supervised detection

model.

The rest of this paper is organized as follows: Section 2

discusses some work related to our own. In Sect. 3, we

introduce our weakly supervised network. Sections 4 and 5

present the experimental results and comparisons with

other methods. Finally, this paper concludes in Sect. 6.

2 Related work

In this section, we review the prior work related to the

paper, covering the CNNs based on Multiple instance

learning, WSDDN and its variants, as well as localization

by iteratively learning.

2.1 CNNs based on Multiple Instance Learning
(MIL)

Several recent works investigate weakly supervised com-

puter vision tasks by practicing multiple instance learning

(MIL) framework. MIL provides a set of bags, and each

unit bag includes a collection of instances. For a given

Matrices representation
of spatial division

X
Y
W
H

Spatial division

SAM CAM

Multiple Instance Learning

Interconversion

Interconversion

Mutual
constraint

loss

Fig. 1 Bounding box and spatial division and its matrix representation

can be converted to each other. Both SAM and CAM meet the

definition of spatial division. In this way, our SDN generates these

two spatial divisions in two different ways. Through mutual constraint

learning between them, the hidden bounding box parameters can be

obtained in the middle process. These parameters are used as the final

prediction of our model to achieve weakly supervised detection
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category, the positive bag contains at least one positive

instance (target object is present in the image), and the

negative bag does not hold any positive instance (there are

only noisy backgrounds relative to the target class in the

image). In this way, although there are only image-level

labels, the fundamental elements of learning are instances

(local image region) rather than the entire image so that the

learning target can be expanded into more complex tasks. It

is straightforward to explain weakly supervised applica-

tions to computer vision as a MIL problem. Following this

paradigm, CNNs can first extract a set of candidate object

regions (including associated target objects or irrelevant

backgrounds) from each image. After that, some output

modules (such as classifier, object detectors) would be

designed to be trained just by the image-level label.

Pioneering work in this direction is the global max

pooing MIL strategy proposed in [22]. The authors show

that train a CNN network using the global max pooing MIL

strategy can localize objects of different sizes and aspect

ratios. In [40], Zhou et al. adopt a similar global average

pooling layer proposed in [17]. The above two pooling

techniques avoid the lost when fully connected layers are

used for classification and create a remarkable localizable

deep representation. The solution named WELDON pro-

posed in [8] extend the max pooling from the top-1 to the

top-k and combine contrary evidence in the prediction layer

in the same way as for top instances. Similar to this pooling

improvement, there are LSE [30] and GRP [9], all of which

seeks a smooth combination of global average pooling and

global max pooing, allowing the model to more evenly find

the spatial characteristics of the object without undersam-

pling or oversampling. In [7], the authors added a multi-

map transfer based on WELDON and proposed a fully

convolutional network WILDCAT which jointly aims at

getting adequately localized features and fixing object

regions for learning spatial coherence.

It is worth noting that most existing approaches use

CAMs from a global perspective without any constraint

apart from image-level supervision, which makes the

learning process prone to stuck in a local minimum. In our

work, we aim to keep spatial invariance for aligning

regions of interest by constraint CAMs by adaptive learn-

ing parameters.

2.2 End-to-end weakly supervised detection
models

Using CNNs to build a weakly supervised detection end-to-

end model is mainly based on WSDDN, and almost all

other improvements are based on it.

In WSDDN [5], the authors proposed a weakly super-

vised deep detection network which consists of two data

streams perform region recognition and object detection,

respectively. WSDDN is the first to address the problem of

WSOD only with end-to-end CNNs. After that, lots of its

variants ([6, 13, 14, 38, 39]) are continually developing.

For example, Kantorov et al. [14] also use the two-stream

network which branches a localization stream in parallel

with a classification stream. This improved work proposes

context-aware guidance models leverage their surrounding

context regions to improve localization. The solution pro-

posed in [6] extend the WSDDN by a new architecture of

cascaded networks, which include two multi-stage cas-

caded networks with different loss functions. In [13], the

author introduces the attention mechanism into the

WSDDN to further better identify objects of interest from

cluttered backgrounds. Zhang et al. [39] adopt the online

instance classifier refinement (OICR) method [31] to refine

the WSDNN. Zhang et al. [38] propose a zigzag learning

strategy based on WSDDN to prevent the model from

overfitting initial seeds. Kosugi et al. [15] improve the

WSDDN from two instance labeling methods. Besides,

WSDDN becomes a base MIL detector network for some

more complex WSD models. For example, Zeng et al. [36]

propose WSOD2 to extract object boundary information by

fusing top-down class confidence scores and bottom-up

object evidence. Zeng et al. [35] propose a classification

guided attention mechanism to improve localization per-

formance. Shen et al. [28] join weakly supervised object

detection and segmentation tasks by Cyclic Guidance

Learning, which helps both tasks to complement each other

by counterparty patterns.

The key to WSDDN and its variants to effectively

implement object detection is the candidate object region

(bounding box) proposal mechanism (such as Selective

Search Windows [26] and Edge Boxes [41]). In other

words, without the prior region proposal, these models will

accomplish nothing. In contrast, the structure we present in

this paper can be seen as a generalization of differentiable

constraint to any bounding box attention without any prior.

It is worth noting that STN [12] is an end-to-end model

introducing spatial transformation capabilities to a standard

neural network, whose design of differentiable modules is

similar to our work. However, STN could only be con-

sidered as an attention mechanism rather than a detection

network. This means that STN can only specify a category-

independent for classification, and our structure can give

explicit category-dependent bounding box.

2.3 Localization by iteratively learning

Different from WSDNN to perform object detection in

only one single shot, another set of methods

([1–4, 16, 21, 23, 25, 27, 29]) use the iteratively learning

paradigm. Although some models only use WSDDN to

complete the initial detection, they are still trained
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iteratively. Therefore, in this subsection, we emphasize the

training process rather than the structure of the model. For

example, inspired by curriculum learning Ref. [1, 16]

propose self-paced learning, which starts with easy sam-

ples, then consider hard ones in training. After that, Ref.

[2, 29] proposed a selection of window space by allowing

smaller windows, which improves the selection of samples

via the confidence of max scoring window in [16]. Also,

[27] uses inter-category competition to select samples.

Most of the methods in this paradigm can use either

region proposal or other simple initialization strategies

(whole image [4, 21], whole image minus a margin

[3, 23, 25]) without relying on region proposal. However,

the process of iteratively learning is too complicated and

requires much human experience to control the iterative

switching conditions. In contrast, our model does not rely

on region proposal and only requires a simple one-step

training process without iteration.

3 Weakly supervised detection

Our weakly supervised object detection model consists of

three modules, as depicted in Fig. 2. The first module,

named WSL transfer network, generates Class Activation

Maps (CAMs) from the input image after feature extrac-

tion. These activation proposals describe a set of confident

regions available for the subsequent determination net-

work. The second module, named determination network,

is a simple bounding box regression network that produces

four bounding box parameters from the activation pro-

posals. The third is a parameterized division module, which

generates Shadow Activation Maps (SAMs) that mutual

constraint with CAMs. In this section, we present our

design decisions for each module and describe the mutual

constraint learning process and the entire network topology

at last.

3.1 Feature extraction and WSL transfer network

We designed two different capacities backbone networks—

one small and one large. They are both four layers deep

with three regular convolutional layers and one fully
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Fig. 2 The architecture of our CNN architecture. First, we use FCN to

extract local features from the whole input image. These features are

passed to a WSL transfer layer, which output Class Activation Maps.

Then, a determination network regresses the spatial division param-

eters. In addition to image-level labels to WSL, all modules are also

learning by a mutual constraint way
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convolutional layer. Figure 2 gives an illustration. The

convolution stride and padding are both fixed to 1 pixel,

which preserves the spatial resolution after convolution.

Following some (not all) convolutional layers, we con-

ducted max pooling over a 2� 2 pixel window, with stride

2. The activation function (We use ReLU for all those

hidden layers in this module) and Batch Normalization

(BN) accompany all hidden convolutional layers. A fully

convolutional layer with a 3� 3 kernel follows this stack

of convolutional layers for WSL transfer. Table 1 lists the

configurations for these convolutional and pooling layers.

The input of our model is a fixed-size 56� 56 image with

three channels, and the input image passes through a stack

of convolutional layers with a 3� 3 receptive field to

generates Class Activation Maps T, as

T ¼ T1; . . .;TCf g;Ti 2 RH�W ; ð1Þ

where C is the number of categories and H �W is the

shape of the 2-D activation map.

In order to obtain an appropriate CAMs which activated

confident regions for each category, we extract relevant

regions from global top-k pooling. Specifically, based on

recent MIL [8], we use global pooling to collect multiple

high scoring regions from CAMs. Formally, gw;h;i 2 f0; 1g
is a binary variable denoting the choice of the (w, h) region

from the class-wise CAMs, and Tw;h;i is the score of the

(w, h) region on CAMs for a given class i. We propose the

following aggregation strategy /ið�Þ, which picks the k

highest scoring regions as follows:

/i Tið Þ ¼ 1

k
max
g

X

ðw;hÞ2Ti

gw;h;i � Tw;h;i;

s:t:
X

ðw;hÞ2Ti

gw;h;i ¼ k; i ¼ 1; 2; . . .;C;
ð2Þ

where g ¼ fgw;h;ig, w 2 f1;Wg, h 2 f1;Hg and Ti means

CAM for a given class i, i 2 f1;Cg. We use / ¼
/1;/2; ; . . ./Cð Þ to represent the final result of top-k max

pooling, which is also the final classification prediction

output of our model.

From our model design, it is easy to know that given

input image, each of output activation maps after the last

fully convolutional layer represents a positive region of a

specified object. Following [22], we call the output of the

WSL transfer network as Class Activation Maps (CAMs).

3.2 Determination network

The determination network takes as input the CAMs T 2
RH�W�C with width W, height H, and C channels. By

plugging determination network function fdetð�Þ into the

CAMs, we obtain

H ¼ ðh1; h2; . . .; hCÞ ¼ fdet Tð Þ; ð3Þ

where hi ¼ ðhix; h
i
y; h

i
w; h

i
hÞ encodes bounding box positions

for one of the C classes, indexed by i.

The determination network is structurally similar to the

localization network in STN [12]. However, the h output

from our network can uniquely describe a bounding box

without any transform. This procedure is more like what

we see in fully supervised object detection [24], where the

model directly outputs the bounding box (four real-valued

numbers for each class) and the probability for category

predictions in this bounding box.

fdetð�Þ is a regression network to produce the spatial

division parameters h, which is formulated as:

fdetð�Þ ¼ /d5 � /d6ð�Þ; ð4Þ

where /d5 and /d6 represents the related calculations of

convolutional layer without pooling, and their configura-

tion is listed in Table 1.

3.3 Parameterized division

Object detection demand to divide the entire input image

into two parts: class-specific image regions and the back-

ground. Here, we construct a parameterized division layer,

to be inserted after the determination network to use spatial

parameters to perform this division explicitly.

Suppose that we divide the input image into an H �W

grid. For each grid cell contains a pair of coordinate values

(x, y), representing the center of the grid cell. We call this

general spatial modeling the grid fields. For a particular

class, the grid fields also have a nonnegative value less than

one represents the likelihood of an object present in the

corresponding region. In this way, we can use a matrix D to

represent this spatial modeling. The grid fields should

depend on the following three assumptions.

Assumption 1 If the grid with the center coordinate (x, y)

is all background, then Dx;y ¼ 0.

Table 1 Convolutional layers used in our experiments

Layer Large feature Small feature Kernel Activation Pool

/c1 64 32 3 ReLU 2

/c2 128 64 3 ReLU 2

/c3 128 64 3 ReLU N/A

/c4 10 10 3 N/A N/A

/d5 64 32 3 ReLU N/A

/d6 40 40 14 Sigmoid N/A

In the convolutional layers, the stride and padding are both 1. The

stride of pooling layers is all 2
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Assumption 2 If the grid contains a region related to the

category, then Dx;y [ 0 and

8 L½ðx1; y1Þ�\L½ðx2; y2Þ�;

Dx1;y1 [Dx2;y2 ;
ð5Þ

where L½p� is the European distance from point p to center

point of the object.

Assumption 3 The gradient can be back-propagated

through the of the parameterized division modules, which

is all the partial derivatives of D with respect to the input

and h can be computed.

Both CAMs and SAMs are an instantiation of grid fields.

In contrast to CAMs supervised by the image-level label,

which explores an essential region to generate class-aware

attention maps, the spatial division explicitly generates

SAMs from spatial parameters.

We gradually get SAMs in three steps (shown in Fig. 3).

(1) Calculate the distance of each grid to the center of the

predicted object in each direction of the space (our work

only takes two directions of the Euclidean plane coordi-

nates). (2) We implement the three assumptions described

above in each direction of space. (3) The final SAMs were

calculated by combining the results in all directions. Note

that, for the convenience of description in this section, we

only consider the case of two categories (the interest object

and background).

For the first step, let two constant matrices Dð1Þ
x and Dð1Þ

y

represent the calibration coordinates of each grid in the

horizontal and vertical directions, given by

D
ð1Þ
x;ðw;hÞ ¼

w� 0:5

W
w ¼ 1. . .W ; h ¼ 1. . .H;

D
ð1Þ
y;ðw;hÞ ¼

h� 0:5

H
w ¼ 1. . .W ; h ¼ 1. . .H;

8
>>><

>>>:
ð6Þ

where w, h is matrix subscript, H and W represent the

number of rows and columns of SAMs. Then, calculate

Dð2Þ
x ¼ jDð1Þ

x � hxj;

Dð2Þ
y ¼ jDð1Þ

y � hyj;

8
><

>:
ð7Þ

which represents the distance from the center of each grid

to the center of the predicted object in the horizontal and

vertical. Note that after this step, we only get the geometric

distance, which means the unit for measuring distance here

is the grid.

For the second step, we follow Assumption 2 by com-

puting 1� Dð2Þ
x =hw and 1� Dð2Þ

y =hh. Then, in order to

comply with Assumption 1, we use maxð� ; 0Þ and plug the

previous calculations result into it:

Fig. 3 Example of applying spatial division to get SAMs. In the figure, grids represent the matrices at different steps. The saturation of the color

is consistent with the value in the grid, which describes a measure of distance (color figure online)
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Dð3Þ
x ¼ max 1� Dð2Þ

x =hw; 0
� �

;

Dð3Þ
y ¼ max 1� Dð2Þ

y =hh; 0
� �

;

8
><

>:
ð8Þ

where Dð3Þ
x ;Dð3Þ

y 2 ½0; 1�W�H
and all calculations in this

formula are element-wise. The calculation of Eq. (8) first

turns the geometric distance into a functional distance. In

other words, it is to normalize the geometric distance. The

hw and hh as the denominator means that we can use the

width and height predicted from determination network as

the boundary for whether the value is zero or not.

For the third step, the calculation needs to determine the

multi-directional intersection. Doing so, D is written

D ¼ Dð3Þ
x � Dð3Þ

y ; ð9Þ

or

D ¼ minðDð3Þ
x ;Dð3Þ

y Þ; ð10Þ

where D 2 ½0; 1�W�H
and all calculations in these equations

are element-wise. In the second step, we only follow As-

sumption 1 and Assumption 2 independently in each

direction. In the third step, we let the entire final output

jointly follow these two assumptions.

All the equations in this section are consistent with

Assumption 3. In theory, any spatial distance function can

be used, as long as gradients can be defined with h. For

example, we can use

max 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1Þ

x � hx
hw

� �2

þ
Dð1Þ

y � hy
hh

 !2
vuut ; 0

0
B@

1
CA ð11Þ

directly instead of Eqs. (9)–(11), and in the experimental

part, we will compare the differences between different

distance functions (Fig. 4).

3.4 Mutual constraint learning

This section describes the procedure for mutual constraint

learning. The learning of both CAMs and SAMs is super-

vised by image-level annotation. Thus, all components can

be integrated into single end-to-end training and

optimization.

The model training objective is derived from the mul-

tiple object categories but is extended to mutual constraint

between various activation maps for object detection.

Specifically, the complete loss consists classification loss

‘class and mutual constraint loss ‘mutual. In the training

phase, we add the two losses as:

‘ ¼ ‘class þ k‘mutual: ð12Þ

‘class is the multi-class cross entropy loss used in [22] which

usually measures the probability error in multiple object

categories in which each category is independent. ‘mutual is

used to measure the similarity between two feature maps.

We hope that through this loss, two feature maps could

constrain each other and learn from each other. ‘class and

‘mutual are described in detail below.

3.4.1 Classification loss

For C different categories, we simply assume each category

is independent, and train the C binary classifiers jointly,

using the cross-entropy loss:

‘class ¼ � 1

N

XN

n¼1

XC

c¼1

yðnÞc log/ðnÞ
c

h

þ 1� yðnÞc

� �
log 1� /ðnÞ

c

� �i ð13Þ

where /ðnÞ
c is the abbreviation for /ðnÞ

c xðnÞjw
� �

, y
ðnÞ
c repre-

sents the ground truth of the n-th sample on class c.

3.4.2 Mutual constraint loss

During training, we also aim at minimizing the mutual

constraint loss whose object is to reduce the difference

between CAMs and SAMs. The first calculation method we

considered in this paper is the L2 norm function, as

‘mutual�l2 ¼
1

N

XN

n¼1

XC

i¼1

XW�H

ðw;hÞ¼ð1;1Þ
1
ðnÞ
i T

ðnÞ
w;h;i � S

ðnÞ
w;h;i

� �2

ð14Þ

where 1
ðnÞ
i denotes if digit i appears in image n.

In order to counteract the standard L2 distance cannot

measure the structural similarity of the feature, we also try

to use the SSIM structure similarity method to make the

last change of the feature and the structural similarity

before the change.

The measure between the q-th window of SAMs SðqÞ and

the q-th window of CAMs T ðqÞ of common size 11� 11 is:

Fig. 4 SAMs generation (digit 4) from different spatial distance

functions
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SSIM T; Sð Þ ¼ 1

Q

XQ

q¼1

2MTðqÞMSðqÞ þ a1
M2

TðqÞ þM2
SðqÞ þ a1

�
2VTðqÞ;SðqÞ þ a2

V2
TðqÞ þ V2

SðqÞ þ a2

ð15Þ

where MTðqÞ is the average of T ðqÞ, MSðqÞ is the average of

SðqÞ, V2
TðqÞ is the variance of T

ðqÞ, V2
SðqÞ is the variance of S

ðqÞ

and VTðqÞ;SðqÞ is the covariance of T
ðqÞ and SðqÞ. a1 and a2 is

set by default as in the original paper [34]. Based on

Eq. (15), we introduced mutual-ssim loss, as

‘mutual�ssim ¼ 1

N

XN

n¼1

XC

i¼1

1
ðnÞ
i 1� SSIM T

ðnÞ
i ; S

ðnÞ
i

� �� �

ð16Þ

where 1
ðnÞ
i denotes if digit i appears in image n.

3.5 Network topology

The combination of the determination network, parame-

terized division, and mutual constraint learning forms our

CNN architecture (shown in Fig. 2).The input of our model

is the picture to be detected. The output is digits contained

in the picture and the corresponding position information

of each number. In the process of training, we only use

image-level labels, so the whole process is weakly super-

vised. All the parameters in our model are trained together

in an end-to-end manner. Among them, the parameters in

the determination network and parameterized division are

only learned by the mutual constraint loss. The parameters

of other parts of the network are learned by the classifi-

cation loss and mutual constraint loss together.

It should be noted that the backbone network used to

extract image features in our model does not require pre-

training. Image feature extraction is not the focus of this

paper. So the structure of the network is as simple as

possible to ensure its effectiveness. For specific structural

details, refer to the data information in Fig. 2.

4 Experiments

In this section, we describe the experiments on an extended

dataset multi-MNIST and report the experimental results.

In the first two subsections, we introduce the multi-MNIST

datasets used in our experiments and the experimental

setup, and then the classification and detection experi-

mental results are presented in the last two subsections.

4.1 Multi-MNIST dataset

In order to verify the multi-label classification capability of

the model, based on MNIST, we have extended a new

dataset named multi-MNIST, in which there are three digits

on each image. Like MNIST, the new dataset contains

around 60k images (50k for train and validation, 10k for

the test), with the task to recognize and detect the presence

of digit in each image. Each digit is presented in a separate

56 � 56 input channel (giving 3-channel inputs), but each

digit is transformed independently, with random scale, and

translation. Each sample is randomly selected, and the new

position in the image is randomly decided after the scale

change. The ratio of scale variances is [0.6, 1.5]. The

choice of location will ensure that each digit is complete

without exceeding the border of the image. Note that these

digits in each image in multi-MNIST only guarantee dif-

ferent samples from MNIST, but there is no guarantee that

they are not in the same category. That is, two or three

identical numbers may appear in one image. Specifically,

when constructing multi-MNIST, the data of the training

set are all from the training set of MNIST, the same applies

to the test set.

4.2 Experimental setup

4.2.1 Evaluation metrics

Average precision (AP) and the mean of AP (mAP) are

used in the quantitative evaluation of classification and

detection tasks on the testing set of multi-MNIST. For

classification, following the previous researches [7–10, 22],

we use the same method as standard protocol in [10] to

compute and report AP. For detection, we report average

precision (AP) at 50% intersection-over-union (IOU) of the

detected boxes with the ground truth ones. Additionally,

the F1-measure is considered in the classification task,

which is commonly used in previous work.

4.2.2 Implementation details

We reproduce all methods in Table 2, and the configuration

in Table 1 constructs their backbone network. For all these

reproduced baseline methods and our SDN, we employed

the same learning configuration. Specifically, we applied

Stochastic Gradient Descent (SGD) with momentum 0.9,

weight decay 1e-7, and batch size 200. In total, all models

were trained for 130 epochs. The learning rate is initially

set to 0.01 and reduced by a factor of ten every 30 epochs.

We use Xavier [11] initialization to initialize all the con-

volutional layers. The number of highest scoring regions
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k is set to 20, which estimated by cross-validation on the

training set.

4.3 Multi-MNIST classification

4.3.1 Results and comparisons

Table 2 shows the comparison of classification perfor-

mance using the mutual constraint learning on the multi-

MNIST test set. We compare our method with three state-

of-the-art classic or WSL ConvNets, including DeepMIL

[22], WELDON [8], and WILDCAT [7, 9]. The main

difference between these three methods is the difference

between global pooling methods. For comparison, we use

these network structures as the basis, and we experimen-

tally show the changes in the classification performance

after adding SDN. As demonstrated in Table 2, all models

which use SDN are outperforming the base one. Although

the methods presented in this paper are not designed for

classification, however, due to the mutual learning between

CAMs and SAMs, the model can better locate the features

favorable for classification, which is in line with common

sense: identifying the relevant region from the image first

will make the classification more reasonable. The com-

parison of the improved results of the three models also

proves that the previous global pooling method with a

better classification effect is also applicable to SDN.

In Table 2, we also show the impact of different mutual

constraint loss and feature capacity choices on classifica-

tion performance. The experimental results show that using

SSIM is slightly better than L2, and increasing the network

scale will improve classification performance. Figure 5

shows the impact of three critical hyperparameters on the

classification effect. The smaller the k and k, the more

accurate the classification, while the learning rate is the

opposite. Because the focus of our model is the detection

part, we have not adjusted the model parameters based on

these trends.

4.3.2 The influence of mutual constraint learning

As mentioned in the previous subsection, mutual constraint

learning contributes to the improvement of classification

accuracy. As illustrated in Fig. 6, CAMs of WELDON-L2

with mutual constraint learning contain fewer noise points

(blocks) compared to CAMs of WELDON. Not only that,

but in the first example of Fig. 6, the CAM under mutual

constraint is more relevant in terms of scale (compared to

CAMs of WELDON, the size of digit 0 and digit 8 in

CAMs of WELDON-L2 is closer to the size of the number

in the input image). It is important to note that in the

second example of Fig. 6, WELDON-L2 locates the digit 1

and WELDON gets nothing. This also proves that better

positioning ability of our model does help to improve

classification accuracy.

4.4 Multi-MNIST detection

4.4.1 Results and comparisons

We compare our method with DeepMIL, WELDON, and

WILDCAT. When these base methods do not use the SDN

configuration, they could only locate the approximate

position of the digit (the point with the highest score in the

CAMs be mapped to the position in the original image)

instead of outputting the bounding box directly. After that,

we output a square centered at that position as the bounding

box output by these methods. As illustrated in Table 3, our

proposed CNN architecture outperforms all the compared

methods by clear margins under weak annotation settings.

These results demonstrate the excellent performance of our

mutual constraint learning for weakly supervised object

detection. Besides, spatial distance function has little

effect, but the model size raise can improve the detection

result significantly. For all these experiments, each number

in the test image will only output one bounding box, even if

the number appears in the input image multiple times.

Furthermore, the model will output the bounding box when

the classification probability is higher than 0.5. Figure 7

provides examples of visual results for digit detection.

4.4.2 The influence of hyperparameter

In this part, we mainly analyze the impact of k in Eq. 2, k in
Eq. (12), learning rate and epoch of the training. As shown

in Fig. 5, when k ¼ 20, the detection effect is the best.

Although for classification tasks, the smaller k is, the better

the effect, for detection, a suitable activation area can more

Table 2 Classification performances (mAP and F1) on the multi-

MNIST test set

Method MC loss S Feature mAP F1

DeepMIL – Small 96.84 95.54

SSIM Small 98.09 96.71

WILDCAT – Small 96.91 95.40

SSIM Small 98.05 97.29

WELDON – Small 96.89 94.98

L2 Small 97.89 97.02

SSIM Small 98.33 97.14

SSIM Large 98.81 97.63

The best performance are highlighted in bold

L2 means using L2-norm loss function for mutual constraint learning

and SSIM means using SSIM structure similarity method for mutual

constraint learning
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accurately cover the position of the digit. For k, it balances
the two tasks of classification and detection. Although it

seems that the classification effect becomes worse after k is

increased, in fact, it only slows down the convergence rate,

and it takes more epoch to achieve the same classification

effect. Also, an important point reflected in the third

column of Fig. 5 is that the detection is sensitive to the

learning rate; that is, too large or too small a learning rate

will hurt the detection.

Fig. 5 The effect of different hyperparameters (k in Eq. (2), k in

Eq. (12), learning rate and epoch of the training) on classification and

detection results. The basic settings are: k ¼ 20; k ¼ 2; learning rate

is 0.01 and total 80 epoch. The values in the line chart reflect the

results of changing the univariate on the horizontal axis

Input Image:

CAMs of WELDON:

CAMs of WELDON-L2:

Input Image:

CAMs of WELDON:

CAMs of WELDON-L2:

0                  1                 2                 3                  4                5                 6               7                 8                 9

Fig. 6 Two examples of CAMs without/with mutual constraint learning (second/third row of each example). In the green box is the CAM of the

ground truth digit. The configuration of mutual constraint learning is WELDON ? L2 ? Eq. (11) (color figure online)
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4.4.3 The influence of mutual constraint loss

From the results in Table 3, we observed that SSIM works

better for digits with close aspect ratios (for example, 0, 4,

5). This phenomenon is also seen in Fig. 8. When L2 is

used, the aspect ratio of the region corresponding to the

digit ‘‘1’’ in SAM is more realistic than the counterpart of

using SSIM. The above shows that although the SSIM can

better locate the position of the object, the ability to express

the shape of the object is insufficient. Besides, Fig. 8 shows

the fundamental difference between the two kinds of loss

functions in the generation process of SAMs. Using SSIM

loss, SAM covers the entire area as much as possible at the

beginning of training, and then the coverage area gradually

Table 3 Average precision (in %) for different methods on the multi-MNIST test set

Method MC Loss Grid Fields Feature 0 1 2 3 4 5 6 7 8 9 mAP

eepMIL – – Small 10.55 2.27 30.28 23.38 24.45 2.03 8.12 19.72 6.40 15.34 14.25

WELDON – – Small 30.85 2.76 10.97 21.28 17.85 21.21 19.91 10.94 17.243 6.97 16.00

WILDCAT – – Small 32.12 2.05 22.46 21.28 17.43 9.80 20.16 8.93 20.74 8.48 16.35

WELDON L2 Equation 11 Small 28.10 49.43 36.99 45.59 38.10 40.64 38.75 27.52 35.26 38.43 37.88

WELDON SSIM Equation 9 Small 49.02 38.18 44.02 39.73 38.83 38.34 39.85 32.48 41.85 35.12 39.75

WELDON SSIM Equation 10 Small 48.78 38.26 43.31 40.48 37.93 37.89 42.59 32.71 40.83 35.26 39.80

WELDON SSIM Equation 11 Small 47.72 37.13 44.58 37.44 37.11 44.22 44.53 31.73 42.59 35.74 40.28

WELDON SSIM Equation 11 Large 49.19 40.61 38.66 46.18 41.60 40.73 46.22 40.87 45.59 37.82 42.75

The best performance are highlighted in bold

The upper part shows results using current WSL model. The lower part shows the results of our models with different mutual constraint loss and

spatial distance function

0

2

4

6

8

1

3

5

7

9

Fig. 7 Qualitative detection

results of our method

(WELDON ? SSIM ?

Eq. (11)). Yellow bounding

boxes indicate objects detected

by our method, while cyan ones

correspond to ground truth

(color figure online)
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decreases and converges to the correct position. Using L2

loss, SAM has a small coverage area at the beginning of

training. During the learning process, it gradually explores

the correct position and gradually converges from small to

large to the correct shape and size. We have observed a

large number of SAMs in the experiment and found that

using L2 loss requires a longer learning time than using

SSIM loss because the SAM coverage area is too small in

the initial training. This makes the generation of CAMs and

SAMs asynchronous, and their mutual constraints are not

sufficient. Therefore, the performance of using L2 loss is

not optimal, either for classification or detection.

4.5 Discussion

The section will provide some discussion of the conver-

gence and robustness of our proposed method. It mainly

involves the limitations of the model found during our

experiments.

The changes in classification and detection results as

epoch increases during training are shown in the last col-

umn of Fig. 5. The classification results converge more

smoothly than object detection. In fact, there is a possibility

of non-convergence when using L2 as MC Loss. The

specific manifestation is that the detection of few numbers

will fail. This may be due to the fact that in this case, the

area covered by the nonzero values of the SAM at the

beginning of the training is too small, as shown in Fig. 8.

During the detection process, when the same number

appears multiple times in the input image, the detection

often fails. Especially when they are next to each other or

overlapped, the model cannot distinguish between them.

This is due to the limitations of our approach. Our SDN

only outputs a single predicted bounding box for the same

number, which is not sufficient for multiple occurrences.

5 Additional experiments

In this section, we further show that the proposed model

gets competitive results across a realistic dataset. To this

end, we report results on the task of beverage detection in a

benchmark dataset for smart unmanned vending machines

(UVM) [37]. The UVM dataset contains a total of 34,052

images containing beverages (10 categories in total). We

selected the images with no more than three objects to form

a subset of the data suitable for our model. The number of

available images is 17, 579. We randomly selected 80% of

the images to form the training set and used the remaining

images for testing.

We reused the best architecture (WELDON ? SSIM ?

Large feature) in Sect. 4 for beverage detection. Our net-

work was not pre-trained with any other natural image

dataset. We report the results by mAP and compared with

fully supervised methods to demonstrate the ability of

weakly supervised detection methods to be applied in a

realistic environment.

Table 4 shows the obtained results. In fact, the

table comparison is not rigorous. The YOLOv3 result from

[37] in the table uses the entire dataset rather than a subset

EPOCH: 1 10 20 30 40 50 60 70

0

8

1

0

8

1

SSIM

L2

Fig. 8 Visualization of SAMs during learning. The upper part uses SSIM loss, and the lower part uses L2 loss. The three lines of each part

correspond to the SAMs with the digit 0, 1, 8, respectively

4976 Neural Computing and Applications (2021) 33:4965–4978

123



of the data as we define it. However, the comparison of the

cases in the table still shows the gap in detection results

between the weakly supervised and fully supervised

methods. There are three possible reasons for the gap: first,

the feature extraction part of our network is not pre-trained

using other datasets; second, our backbone network struc-

ture is relatively simple and has limited feature extraction

capabilities; and third, the limitations of weak supervision

itself. Figure 9 provides examples of visual results for

beverage detection.

6 Conclusion

We proposed a mutual constraint learning approach for

object detection in a weakly supervised scenario, aiming at

generating a predicted bounding box through object

localization maps directly. This work paves a simple yet

entirely new way to mine object regions only with a clas-

sification network.

Using the proposed approach, we achieved improved

results on a multi-MNIST dataset we created ourselves

based on MNIST. Finally, we presented a thorough anal-

ysis of the main components of our proposed approach,

showing the effect of our design choices and allowing other

authors to build on our method, possibly choosing those

components which best fit with other application.
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