Skip to main content

Advertisement

Log in

Urinary markers in the early stage of nephropathy in patients with childhood-onset type 1 diabetes

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to evaluate the association of a urinary tubular marker, liver-type fatty acid binding protein (L-FABP) and an inflammatory marker, serum/urinary YKL-40, with albuminuria in patients with childhood-onset type 1 diabetes (T1D).

Methods

Twenty-nine patients with childhood-onset T1D and 32 controls were enrolled. Serum and urinary concentrations of YKL-40 and urinary concentrations of L-FABP were measured.

Results

The serum levels of YKL-40 were not significantly different between the control group and the patient groups. However, the levels of urinary YKL-40/creatinine (Cr) were higher in the patients, even those with normoalbuminuria than in the controls (p < 0.001). The levels of urinary L-FABP/Cr were not different between the control group and the patient groups. However, the level of urinary L-FABP/Cr in the microalbuminuria group was higher than that in the normoalbuminuria group (p = 0.03). There were no associations between the levels of urinary albumin-to-creatinine ratio and urinary L-FABP/Cr or YKL-40/Cr. However, the urinary L-FABP/Cr level was significantly correlated with the hemoglobin A1C level (p = 0.005) and the urinary YKL-40/Cr level (p = 0.043).

Conclusions

Urinary L-FABP/Cr and YKL-40/Cr may reflect renal injury in early stages of nephropathy in patients with childhood-onset T1D, even in the normoalbuminuric state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caramori ML, Fioretto P, Mauer M (2003) Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 52:1036–1040

    Article  CAS  PubMed  Google Scholar 

  2. Caramori ML, Parks A, Mauer M (2013) Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol 24:1175–1181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH, Doria A, Warram JH (2014) Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 37:226–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nickolas TL, Barasch J, Devarajan P (2008) Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens 17:127–132

    Article  CAS  PubMed  Google Scholar 

  5. Pelsers MM (2008) Fatty acid-binding protein as marker for renal injury. Scand J Clin Lab Investig Suppl 241:73–77

    Article  Google Scholar 

  6. Kamijo-Ikemori A, Sugaya T, Sekizuka A, Hirata K, Kimura K (2009) Amelioration of diabetic tubulointerstitial damage in liver-type fatty acid-binding protein transgenic mice. Nephrol Dial Transplant 24:788–800

    Article  CAS  PubMed  Google Scholar 

  7. Yokoyama T, Kamijo-Ikemori A, Sugaya T, Hoshino S, Yasuda T, Kimura K (2009) Urinary excretion of liver-type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol 174:2096–2106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Panduru NM, Forsblom C, Saraheimo M, Thorn L, Bierhaus A, Humpert PM, Groop PH, FinnDiane Study G (2013) Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care 36:2077–2083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Araki S, Haneda M, Koya D, Sugaya T, Isshiki K, Kume S, Kashiwagi A, Uzu T, Maegawa H (2013) Predictive effects of urinary liver-type fatty acid-binding protein for deteriorating renal function and incidence of cardiovascular disease in type 2 diabetic patients without advanced nephropathy. Diabetes Care 36:1248–1253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Nakamura T, Sugaya T, Kawagoe Y, Ueda Y, Osada S, Koide H (2005) Effect of pitavastatin on urinary liver-type fatty acid-binding protein levels in patients with early diabetic nephropathy. Diabetes Care 28:2728–2732

    Article  CAS  PubMed  Google Scholar 

  11. Volck B, Price PA, Johansen JS, Sorensen O, Benfield TL, Nielsen HJ, Calafat J, Borregaard N (1998) YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc Assoc Am Physicians 110:351–360

    CAS  PubMed  Google Scholar 

  12. Johansen JS, Williamson MK, Rice JS, Price PA (1992) Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res 7:501–512

    Article  CAS  PubMed  Google Scholar 

  13. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA (2011) Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 73:479–501

    Article  CAS  PubMed  Google Scholar 

  14. Johansen JS (2006) Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull 53:172–209

    CAS  PubMed  Google Scholar 

  15. Roslind A, Johansen JS, Christensen IJ, Kiss K, Balslev E, Nielsen DL, Bentzen J, Price PA, Andersen E (2008) High serum levels of YKL-40 in patients with squamous cell carcinoma of the head and neck are associated with short survival. Int J Cancer 122:857–863

    Article  CAS  PubMed  Google Scholar 

  16. Duru S, Yuce G, Ulasli SS, Erdem M, Kizilgun M, Kara F, Ardic S (2013) The relationship between serum YKL-40 levels and severity of asthma. Iran J Allergy Asthma Immunol 12:247–253

    CAS  PubMed  Google Scholar 

  17. Koutroubakis IE, Petinaki E, Dimoulios P, Vardas E, Roussomoustakaki M, Maniatis AN, Kouroumalis EA (2003) Increased serum levels of YKL-40 in patients with inflammatory bowel disease. Int J Color Dis 18:254–259

    Google Scholar 

  18. Michelsen AE, Rathcke CN, Skjelland M, Holm S, Ranheim T, Krohg-Sorensen K, Klingvall MF, Brosstad F, Oie E, Vestergaard H, Aukrust P, Halvorsen B (2010) Increased YKL-40 expression in patients with carotid atherosclerosis. Atherosclerosis 211:589–595

    Article  CAS  PubMed  Google Scholar 

  19. Ostergaard C, Johansen JS, Benfield T, Price PA, Lundgren JD (2002) YKL-40 is elevated in cerebrospinal fluid from patients with purulent meningitis. Clin Diagn Lab Immunol 9:598–604

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Rathcke CN, Persson F, Tarnow L, Rossing P, Vestergaard H (2009) YKL-40, a marker of inflammation and endothelial dysfunction, is elevated in patients with type 1 diabetes and increases with levels of albuminuria. Diabetes Care 32:323–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rondbjerg AK, Omerovic E, Vestergaard H (2011) YKL-40 levels are independently associated with albuminuria in type 2 diabetes. Cardiovasc Diabetol 10:54

    Article  PubMed Central  PubMed  Google Scholar 

  22. Schmidt IM, Hall IE, Kale S, Lee S, He CH, Lee Y, Chupp GL, Moeckel GW, Lee CG, Elias JA, Parikh CR, Cantley LG (2013) Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function. J Am Soc Nephrol 24:309–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hall IE, Stern EP, Cantley LG, Elias JA, Parikh CR (2014) Urine YKL-40 is associated with progressive acute kidney injury or death in hospitalized patients. BMC Nephrol 15:133

    Article  PubMed Central  PubMed  Google Scholar 

  24. Seo JY, Cho YG, Kang JH, Hur YI, Park HA, Kim KW, Kwon SK (2013) New diagnostic criteria for obesity and overweight in Korean children and adolescents using 2007 Korean national growth charts. Obes Res Clin Pract 7:e182–189

    Article  PubMed  Google Scholar 

  25. Lee CG, Park HM, Shin HJ, Moon JS, Hong YM, Kim NS, Ha IS, Chang MJ, Oh KW (2011) Validation study of the dinamap ProCare 200 upper arm blood pressure monitor in children and adolescents. Korean J Pediatr 54:463–469

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lee JH, Kim SS, Kim IJ, Song SH, Kim YK, In Kim J, Jeon YK, Kim BH, Kwak IS (2012) Clinical implication of plasma and urine YKL-40, as a proinflammatory biomarker, on early stage of nephropathy in type 2 diabetic patients. J Diabetes Complicat 26:308–312

    Article  PubMed  Google Scholar 

  27. Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, Kimura K, Fujita T, Kinukawa T, Taniguchi H, Nakamura K, Goto M, Shinozaki N, Ohshima S, Sugaya T (2007) Renal L-type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol 18:2894–2902

    Article  CAS  PubMed  Google Scholar 

  28. Kamijo-Ikemori A, Sugaya T, Yasuda T, Kawata T, Ota A, Tatsunami S, Kaise R, Ishimitsu T, Tanaka Y, Kimura K (2011) Clinical significance of urinary liver-type fatty acid-binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care 34:691–696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Vaidya VS, Niewczas MA, Ficociello LH, Johnson AC, Collings FB, Warram JH, Krolewski AS, Bonventre JV (2011) Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-d-glucosaminidase. Kidney Int 79:464–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hsiao PH, Tsai WS, Tsai WY, Lee JS, Tsau YK, Chen CH (1996) Urinary N-acetyl-beta-d-glucosaminidase activity in children with insulin-dependent diabetes mellitus. Am J Nephrol 16:300–303

    Article  CAS  PubMed  Google Scholar 

  31. Ciavarella A, Flammini M, Stefoni S, Borgnino LC, Forlani G, Bacci L, Vannini P (1982) Kidney function after improved metabolic control in newly diagnosed diabetes and in diabetic patients with nephropathy. Diabetes Care 5:624–629

    Article  CAS  PubMed  Google Scholar 

  32. De Nicola L, Gabbai FB, Liberti ME, Sagliocca A, Conte G, Minutolo R (2014) Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis 64:16–24

    Article  PubMed  Google Scholar 

  33. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597

    Article  CAS  PubMed  Google Scholar 

  34. Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, Noiri E, Devarajan P (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472

    Article  CAS  PubMed  Google Scholar 

  35. Schiffl H, Lang SM (2013) Urinary biomarkers and acute kidney injury in children: the long road to clinical application. Pediatr Nephrol 28:837–842

    Article  PubMed  Google Scholar 

  36. Miltenyi M, Korner A, Tulassay T, Szabo A (1985) Tubular dysfunction in type I diabetes mellitus. Arch Dis Child 60:929–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Thomson SC, Vallon V, Blantz RC (2004) Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Ren Physiol 286:F8–15

    Article  CAS  Google Scholar 

  38. Sakamoto F, Katakami N, Kaneto H, Yasuda T, Takahara M, Miyashita K, Kuroda A, Matsuhisa M, Kosugi K, Shimomura I (2013) Association of serum YKL-40 levels with urinary albumin excretion rate in young Japanese patients with type 1 diabetes mellitus. Endocr J 60:73–79

    Article  CAS  PubMed  Google Scholar 

  39. Prodjosudjadi W, Gerritsma JS, Klar-Mohamad N, Gerritsen AF, Bruijn JA, Daha MR, van Es LA (1995) Production and cytokine-mediated regulation of monocyte chemoattractant protein-1 by human proximal tubular epithelial cells. Kidney Int 48:1477–1486

    Article  CAS  PubMed  Google Scholar 

  40. Jevnikar AM, Brennan DC, Singer GG, Heng JE, Maslinski W, Wuthrich RP, Glimcher LH, Kelley VE (1991) Stimulated kidney tubular epithelial cells express membrane associated and secreted TNF alpha. Kidney Int 40:203–211

    Article  CAS  PubMed  Google Scholar 

  41. Yung S, Cheung KF, Zhang Q, Chan TM (2013) Mediators of inflammation and their effect on resident renal cells: implications in lupus nephritis. Clin Dev Immunol 2013:317682

    Article  PubMed Central  PubMed  Google Scholar 

  42. Perrin N, Berg UB (2015) Estimated glomerular filtration rates cannot replace measured GFR in type 1 diabetes patients with hyperfiltration. Acta Paediatr 104:730–737

    Article  PubMed  Google Scholar 

  43. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Munoz A (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82:445–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Bjornstad P, Cree-Green M, Baumgartner A, Maahs DM, Cherney DZ, Pyle L, Regensteiner JG, Reusch JE, Nadeau KJ (2015) Renal function is associated with peak exercise capacity in adolescents with type 1 diabetes. Diabetes Care 38:126–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wada T, Shimizu M, Toyama T, Hara A, Kaneko S, Furuichi K (2012) Clinical impact of albuminuria in diabetic nephropathy. Clin Exp Nephrol 16:96–101

    Article  CAS  PubMed  Google Scholar 

  46. Mann JF, Anderson C, Gao P, Gerstein HC, Boehm M, Ryden L, Sleight P, Teo KK, Yusuf S, Investigators O (2013) Dual inhibition of the renin-angiotensin system in high-risk diabetes and risk for stroke and other outcomes: results of the ONTARGET trial. J Hypertens 31:414–421

    Article  CAS  PubMed  Google Scholar 

  47. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC, Klein R (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361:40–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the Institute of Clinical Medicine Research of Bucheon St. Mary’s Hospital, Research Fund, BCMC13YH9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Ho Jung.

Ethics declarations

This study was approved by the institutional review board of the Catholic University of Korea and written informed consent was obtained from all study participants and the caregivers of each child before enrollment.

Conflict of interest

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, JS., Kim, SH., Cho, K.S. et al. Urinary markers in the early stage of nephropathy in patients with childhood-onset type 1 diabetes. Pediatr Nephrol 31, 623–631 (2016). https://doi.org/10.1007/s00467-015-3253-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3253-9

Keywords

Navigation