Skip to main content

Advertisement

Log in

Hepcidin and risk of anemia in CKD: a cross-sectional and longitudinal analysis in the CKiD cohort

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Hepcidin, a key iron regulatory protein, is elevated in patients with chronic kidney disease (CKD). Its role in the development and progression of the anemia of CKD in children remains poorly defined.

Methods

Cross-sectional and longitudinal study in children aged 1–16 years with stage 2–4 CKD in the Chronic Kidney Disease in Children (CKiD) cohort (n = 133) with hepcidin measured at baseline and hemoglobin (HGB) measured annually at follow-up. Anemia was defined as HGB <5th percentile for age/sex OR treatment with an erythropoiesis-stimulating agent (ESA).

Results

Hepcidin levels correlated negatively with glomerular filtration rate (GFR; r = −0.22, p = 0.01) and positively with ferritin (r = 0.67, p < 0.001). At the lower end of the GFR spectrum at baseline (10th percentile, 27.5 mL/min/1.73 m2), higher hepcidin was associated with a 0.87 g/dL decrease in HGB during follow-up (95 % CI −1.69, −0.05 g/dL, p = 0.038). At higher GFR percentiles there was no significant association between baseline hepcidin and HGB during follow-up. Among 90 non-anemic subjects at baseline, 23.3 % developed incident anemia. In subjects with GFR ≤ the median, a higher hepcidin level was associated with an increased risk of incident anemia (at the 10th percentile GFR, HR 3.471, 95 % CI 1.228, 9.810, p = 0.019; at the 25th percentile GFR, HR 2.641, 95 % CI 1.213, 5.750, p = 0.014; at the 50th percentile GFR, HR 1.953, 95 % CI 1.011, 3.772, p = 0.046). Among subjects with GFR at the 75th percentile or above, incrementally higher baseline hepcidin was not associated with increased anemia risk.

Conclusions

Higher hepcidin levels are associated with a decreased HGB and an increased risk of incident anemia, and this association is most significant among subjects with lower GFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Poli M, Asperti M, Ruzzenenti P, Regoni M, Arosio P (2014) Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharmacol 5(86):1–13

    Google Scholar 

  2. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. J Clin Invest 306(5704):2090–2093

    CAS  Google Scholar 

  3. Roy CN, Andrews NC (2005) Anemia of inflammation: the hepcidin link. Curr Opin Hematol 12(2):107–111

    Article  CAS  PubMed  Google Scholar 

  4. Atkinson MA, White CT (2012) Hepcidin in anemia of chronic kidney disease: review for the pediatric nephrologist. Pediatr Nephrol 27(1):33–40

    Article  PubMed  Google Scholar 

  5. Young B, Zaritsky J (2009) Hepcidin for clinicians. Clin J Am Soc Nephrol 4(8):1384–1387

    Article  CAS  PubMed  Google Scholar 

  6. Coyne DW (2011) Hepcidin: clinical utility as a diagnostic tool and therapeutic target. Kidney Int 80(3):240–244

    Article  CAS  PubMed  Google Scholar 

  7. Niihata K, Tomosugi N, Uehata T, Shoji T, Mitsumoto K, Shimizu M, Kawabata H, Sakaguchi Y, Suzuki A, Hayashi T, Okada N, Isaka Y, Rakugi H, Tsubakihara Y (2012) Serum hepcidin-25 levels predict the progression of renal anemia in patients with non-dialysis chronic kidney disease. Nephrol Dial Transplant 27(12):4378–4385, discussion 4384–4385

    Article  CAS  PubMed  Google Scholar 

  8. Zaritsky J, Young B, Wang HJ, Westerman M, Olbina G, Nemeth E, Ganz T, Rivera S, Nissenson AR, Salusky IB (2009) Hepcidin–a potential novel biomarker for iron status in chronic kidney disease. Clin J Am Soc Nephrol 4(6):1051–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zaritsky J, Young B, Gales B, Wang HJ, Rastogi A, Westerman M, Nemeth E, Ganz T, Salusky IB (2010) Reduction of serum hepcidin by hemodialysis in pediatric and adult patients. Clin J Am Soc Nephrol 5(6):1010–1014

    Article  PubMed Central  PubMed  Google Scholar 

  10. Preza GC, Pinon R, Ganz T, Nemeth E (2013) Cellular catabolism of the iron-regulatory protein hepcidin. PLoS One 8(3):e58934

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, Taube DH, Bloom SR, Tam FW, Chapman RS, Maxwell PH, Choi P (2009) Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int 75(9):976–981

    Article  CAS  PubMed  Google Scholar 

  12. Malyszko J, Malyszko JS, Pawlak K, Mysliwiec M (2006) Hepcidin, iron status, and renal function in chronic renal failure, kidney transplantation, and hemodialysis. Am J Hematol 81(11):832–837

    Article  CAS  PubMed  Google Scholar 

  13. Mercadel L, Metzger M, Haymann JP, Thervet E, Boffa JJ, Flamant M, Vrtovsnik F, Houillier P, Froissart M, Stengel B, the NephroTest Study Group (2014) The relation of hepcidin to iron disorders, inflammation and hemoglobin in chronic kidney disease. PLoS One 9(6):e99781

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bacchetta J, Zaritsky JJ, Sea JL, Chun RF, Lisse TS, Zavala K, Nayak A, Wesseling-Perry K, Westerman M, Hollis BW, Salusky IB, Hewison M (2014) Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol 25:564–572

    Article  CAS  PubMed  Google Scholar 

  15. Babitt JL, Lin HY (2010) Molecular mechanisms of hepcidin regulation: implications for the anemia of CKD. Am J Kidney Dis 55(4):726–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Malyszko J, Mysliwiec M (2007) Hepcidin in anemia and inflammation in chronic kidney disease. Kidney Blood Press Res 30(1):15–30

    Article  CAS  PubMed  Google Scholar 

  17. Abraham AG, Mak RH, Mitsnefes M, White C, Moxey-Mims M, Warady B, Furth SL (2014) Protein energy wasting in children with chronic kidney disease. Pediatr Nephrol 29(7):1231–1238

    Article  PubMed  Google Scholar 

  18. Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, Wong C, Munoz A, Warady BA (2006) Design and methods of the chronic kidney disease in children (CKiD) prospective cohort study. Clin J Am Soc Nephrol 1(5):1006–1015

    Article  PubMed Central  PubMed  Google Scholar 

  19. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58(2):259–263

    CAS  PubMed  Google Scholar 

  20. Fadrowski JJ, Pierce CB, Cole SR, Moxey-Mims M, Warady BA, Furth SL (2008) Hemoglobin decline in children with chronic kidney disease: Baseline results from the chronic kidney disease in children prospective cohort study. Clin J Am Soc Nephrol 3(2):457–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group (2012) KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl 2:279–335

    Article  Google Scholar 

  22. Hollowell JG, van Assendelft OW, Gunter EW, Lewis BG, Naijar M, Pfeiffer C (2005) Hematological and iron-related analytes—reference data for persons aged 1 year and over: United States, 1988–94. Vital Health Stat 11 (247):1–156

  23. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M (2008) Immunoassay for human serum hepcidin. Blood 112(10):4292–4297

    Article  CAS  PubMed  Google Scholar 

  24. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wong CS, Pierce CB, Cole SR, Warady BA, Mak RH, Benador NM, Kaskel F, Furth SL, Schwartz GJ, CKiD Investigators (2009) Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol 4(4):812–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Amaral S, Hwang W, Fivush B, Neu A, Frankenfield D, Furth S (2006) Association of mortality and hospitalization with achievement of adult hemoglobin targets in adolescents maintained on hemodialysis. J Am Soc Nephrol 17(10):2878–2885

    Article  PubMed  Google Scholar 

  27. Borzych-Duzalka D, Bilginer Y, Ha IS, Bak M, Rees L, Cano F, Munarriz RL, Chua A, Pesle S, Emre S, Urzykowska A, Quiroz L, Ruscasso JD, White C, Pape L, Ramela V, Printza N, Vogel A, Kuzmanovska D, Simkova E, Muller-Wiefel DE, Sander A, Warady BA, Schaefer F, International Pediatric Peritoneal Dialysis Network (IPPN) Registry (2013) Management of anemia in children receiving chronic peritoneal dialysis. J Am Soc Nephrol 24(4):665–676

    Article  PubMed Central  PubMed  Google Scholar 

  28. Atkinson MA, Martz K, Warady BA, Neu AM (2010) Risk for anemia in pediatric chronic kidney disease patients: a report of NAPRTCS. Pediatr Nephrol 25(9):1699–1706

    Article  PubMed  Google Scholar 

  29. Uehata T, Tomosugi N, Shoji T, Sakaguchi Y, Suzuki A, Kaneko T, Okada N, Yamamoto R, Nagasawa Y, Kato K, Isaka Y, Rakugi H, Tsubakihara Y (2012) Serum hepcidin-25 levels and anemia in non-dialysis chronic kidney disease patients: a cross-sectional study. Nephrol Dial Transplant 27(3):1076–1083

    Article  CAS  PubMed  Google Scholar 

  30. Macdougall IC, Malyszko J, Hider RC, Bansal SS (2010) Current status of the measurement of blood hepcidin levels in chronic kidney disease. Clin J Am Soc Nephrol 5(9):1681–1689

    Article  CAS  PubMed  Google Scholar 

  31. Cangemi G, Pistorio A, Miano M, Gattorno M, Acquila M, Bicocchi MP, Gastaldi R, Riccardi F, Gatti C, Fioredda F, Calvillo M, Melioli G, Martini A, Dufour C (2013) Diagnostic potential of hepcidin testing in pediatrics. Eur J Haematol 90(4):323–330

    Article  CAS  PubMed  Google Scholar 

  32. Galesloot TE, Vermeulen SH, Geurts-Moespot AJ, Klaver SM, Kroot JJ, vanTienoven D, Wetzels JFM, Kiemeney LALM, Sweep F, den Heijer M, Swinkels DW (2011) Serum hepcidin: reference ranges and biochemical correlates in the general population. Blood 117(25):e218–e225

    Article  CAS  PubMed  Google Scholar 

  33. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113(9):1271–1276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Atkinson MA, Pierce CB, Fadrowski JJ, Benador NM, White CT, Turman MA, Pan CG, Abraham AG, Warady BA, Furth SL (2012) Association between common iron store markers and hemoglobin in children with chronic kidney disease. Pediatr Nephrol 27(12):2275–2283

    Article  PubMed Central  PubMed  Google Scholar 

  35. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, Reddan D, Investigators CHOIR (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355(20):2085–2098

    Article  CAS  PubMed  Google Scholar 

  36. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, Feyzi JM, Ivanovich P, Kewalramani R, Levey AS, Lewis EF, McGill JB, McMurray JJ, Parfrey P, Parving HH, Remuzzi G, Singh AK, Solomon SD, Toto R (2009) A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 361(21):2019–2032

    Article  PubMed  Google Scholar 

  37. Lestz RM, Fivush BA, Atkinson MA (2014) Association of higher erythropoiesis stimulating agent dose and mortality in children on dialysis. Pediatr Nephrol 29(10):2021–2028

    Article  PubMed  Google Scholar 

  38. Stancu S, Barsan L, Stanciu A, Mircescu G (2010) Can the response to iron therapy be predicted in anemic nondialysis patients with chronic kidney disease? Clin J Am Soc Nephrol 5(3):409–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fung E, Nemeth E (2013) Manipulation of the hepcidin pathway for therapeutic purposes. Haematologica 98(11):1667–1676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ruchala P, Nemeth E (2014) The pathophysiology and pharmacology of hepcidin. Trends Pharmacol Sci 35(3):155–161

    Article  CAS  PubMed  Google Scholar 

  41. Sun CC, Vaja V, Babitt JL, Lin HY (2012) Targeting the hepcidin-ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am J Hematol 87(4):392–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Schwartz GJ, Furth S, Cole SR, Warady B, Munoz A (2006) Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int 69(11):2070–2077

    Article  CAS  PubMed  Google Scholar 

  43. Ford BA, Eby CS, Scott MG, Coyne DW (2010) Intra-individual variability in serum hepcidin precludes its use as a marker of iron status in hemodialysis patients. Kidney Int 78(8):769–773

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christopher Pierce, MHS, and Alison Abraham, PhD for their valuable assistance in the design of the statistical analysis. Data in this manuscript were collected by the Chronic Kidney Disease in Children Prospective Cohort (CKiD) Study with clinical coordinating centers (Principal Investigators) at Children’s Mercy Hospital and the University of Missouri Kansas City (Bradley Warady, MD) and the Children’s Hospital of Philadelphia (Susan Furth, MD, PhD), Central Biochemistry Laboratory (George Schwartz, MD) at the University of Rochester Medical Center, and the data coordinating center (Alvaro Muñoz, PhD) at the Johns Hopkins Bloomberg School of Public Health.

Support

The CKiD Study is supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, with additional funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and the National Heart, Lung, and Blood Institute (U01-DK-66143, U01-DK-66174, U01DK-082194, U01-DK-66116). The CKID website is located at http://www.statepi.jhsph.edu/ckid. Meredith Atkinson MD, MHS, was supported by the National Institutes of Health (NIH)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK; K23-DK-084116). At the Johns Hopkins University School of Medicine, Dr Atkinson was also supported by grant number UL1 RR 025005 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. Cindy N. Roy PhD was supported by R01 DK082722. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official view of NIDDK, NCRR or NIH.

Conflict of interest

Cindy N. Roy, PhD, was the Principal Investigator for a sponsored research agreement between Johns Hopkins University and the Celgene Corporation from 2011 to 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meredith A. Atkinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, M.A., Kim, J.Y., Roy, C.N. et al. Hepcidin and risk of anemia in CKD: a cross-sectional and longitudinal analysis in the CKiD cohort. Pediatr Nephrol 30, 635–643 (2015). https://doi.org/10.1007/s00467-014-2991-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2991-4

Keywords

Navigation