Skip to main content
Log in

A Comparison of Mapping Algorithms for Hierarchical Adaptive FEM in Finite Elasto-Plasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The aim of this contribution is a comparison of different mapping techniques usually applied in the field of hierarchical adaptive FE-codes. The calculation of mechanical field variables for the modified mesh is an important but sensitive aspect of adaptation approaches of the spatial discretization. Regarding non-linear boundary value problems procedures of mesh refinement and coarsening imply the determination of strains, stresses and internal variables at the nodes and the Gauss points of new elements based on the transfer of the required data from the former mesh. The kind of mapping of the field variables affects the convergence behaviour as well as the costs of an adaptive FEM-calculation in a non-negligible manner. In order to improve the stability as well as the efficiency of the adaptive process a comparison of different mapping algorithms is presented and evaluated. Within this context, the mapping methods taken into account are

  • -an element-oriented extrapolation procedure using special shape functions,

  • -a patch-oriented transfer approach and,

  • -the allocation of nodal history-dependent state (field) variable data using a supplementary integration of the material law at the nodes of the elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Oden J (2000) A posteriori error estimation in finite element analysis. Wiley, New York

    MATH  Google Scholar 

  2. Akin JE (2005) Finite element analysis with error estimation. Pre-publication draft, http://www.owlnet.rice.edu/~mech517/

  3. Babuška I, Miller A (1981) A-posteriori error estimates and adaptive techniques for the finite element method. Technical report, Institute for Physical Science and Technology, University of Maryland

  4. Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12:1597–1615

    Article  Google Scholar 

  5. Babuška I, Strouboulis T, Upadhyay CS, Gangaraj S, Copps K (1994) Validation of a posteriori error estimators by numerical approach. Int J Numer Methods Eng 15:1073–1123

    Article  Google Scholar 

  6. Babuška I, Strouboulis T (2001) The finite element method and its reliability. The Clarendon Press, Oxford, Oxford University Press, New York

  7. Barthold FJ, Schmidt M, Stein E (1997) Error estimation and mesh adaptivity for elasto-plastic deformations. In: Proceedings of the 5th international conference on computational plasticity, COMPLAS V, Barcelona, pp 597–603

  8. Belytschko T, Blacker TD (1994) Enhanced derivative recovery through least square residual penalty. Appl Num Math 14:55–68

    Article  MATH  MathSciNet  Google Scholar 

  9. Blacker TD, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37:517–536

    Article  MATH  MathSciNet  Google Scholar 

  10. Boroomand B, Zienkiewicz OC (1997) An improved REP recovery and the effectivity robustness test. Int J Numer Methods Eng 40:3247–3277

    Article  MATH  MathSciNet  Google Scholar 

  11. Boroomand B, Zienkiewicz OC (1999) Recovery procedures in error estimation and adaptivity, part II: adaptivity in nonlinear problems of elasto-plasticity behaviour. Comput Method Appl Mech Eng 176:127-146

    Article  MATH  MathSciNet  Google Scholar 

  12. Bucher A (2001) Deformationsgesetze für große elastisch- plastische Verzerrungen unter Berücksichtigung einer Substruktur. PhD Thesis, TU Chemnitz

  13. Bucher A, Görke UJ, Kreißig R (2001) Development of a generalized material interface for the simulation of finite elasto-plastic deformations. Int J Sol Struct 38/52:9423–9436

    Article  MATH  Google Scholar 

  14. Bucher A, Görke UJ, Kreißig R (2004) A material model for finite elasto-plastic deformations considering a substructure. Int J Plast 20:619–642

    Article  MATH  Google Scholar 

  15. Bucher A, Meyer A, Görke UJ, Kreißig R (2005) A contribution to error estimation and mapping algorithms for a hierarchical adaptive FE-strategy in finite elastoplasticity. Comput Mech, 36(3):182–195

    Article  MATH  Google Scholar 

  16. Carstensen C, Alberty J (2003) Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening. Comput Method Appl Mech Eng 192:1435-1450

    Article  MATH  MathSciNet  Google Scholar 

  17. Carstensen C, Funken S (1999) Averaging technique for FE-a posteriori error control in elasticity. Part I: Conforming FEM. Technical Report 99-14, Christian-Albrechts-Universität zu Kiel, Berichtsreihe des Mathematischen Seminars Kiel

  18. Carstensen C (2004) Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM – Z Angew Math Mech 84:3–21

    Article  MATH  MathSciNet  Google Scholar 

  19. Cramer H, Rudolph M, Steinl G, Wunderlich W (1999) A hierarchical adaptive finite element strategy for elastic-plastic problems. Comput Struct 73:61–72

    Article  MATH  Google Scholar 

  20. Einsfeld RA, Roehl D, Bittencourt TN, Martha LF (1998) Mapping of local variables due to remeshing in non-linear plasticity fracture problems. In: Oñate S, Dvorkin E (eds) Computational mechanics. New Trends and Applications, Idelsohn (CIMNE, Barcelona)

  21. Fourment L, Chenot JL (1995) Error estimators for viscoplastic materials. Application to forming processes. Int J Numer Methods Eng 38:469–490

    Article  MathSciNet  Google Scholar 

  22. Gu H, Zong Z, Hung KC (2004) A modified superconvergent patch recovery method and its application to large deformation problems. Finite Elem Anal Des 40:665–687

    Article  Google Scholar 

  23. Hinton E, Campbell JS (1974) Local and global smoothing of discontinuous finite element functions using least squares. Int J Numer Methods Eng 8:461-480

    Article  MATH  MathSciNet  Google Scholar 

  24. Johnson C, Hansbo P (1992) Adaptive finite element methods in computational mechanics. Comput Method Appl Mech Eng 101:143–181

    Article  MATH  MathSciNet  Google Scholar 

  25. Křižek M, Neittaanmäki P (1987) On superconvergence techniques. Acta Appl Math 9:175–198

    Article  MathSciNet  Google Scholar 

  26. Lee T, Park HC, Lee SW (1997) A superconvergent stress recovery technique with equilibrium constraint. Int J Numer Methods Eng 40:1139–1160

    Article  MATH  Google Scholar 

  27. Oden JT, Brauchli HJ (1971) On the calculation of consistent stress distributions in finite element approximations. Int J Numer Methods Eng 3:317–325

    Article  MATH  Google Scholar 

  28. Ortiz M, Quigley JJ (1991) Adaptive mesh refinement in strain localization problems. Comput Method Appl Mech Eng 90:781–804

    Article  Google Scholar 

  29. Perić D, Hochard C, Dutko M, Owen DRJ (1996) Transfer operators for evolving meshes in small strain elasto-plasticity. Comput Method Appl Mech Eng 137:331–344

    Article  Google Scholar 

  30. Rieger A, Scherf O, Wriggers P (2003) Adaptive methods for contact problems. In: Stein E (eds) Error-controlled adaptive finite elements in solid mechanics. Wiley, Chichester, pp 147–179

    Google Scholar 

  31. Steeb H, Maute A, Ramm E (2003) Goal-oriented error estimation in solid mechanics. In: Stein E (eds) Error-controlled adaptive finite elements in solid mechanics. Wiley, Chichester, pp 212–261

    Google Scholar 

  32. Stein E, Schmidt M (2003) Adaptive FEM for elasto-plastic deformations. In: Stein E (eds) Error-controlled adaptive finite elements in solid mechanics. Wiley, Chichester, pp 53–107

    Google Scholar 

  33. Ulbricht V, Röhle H (1975) Berechnung von Rotationsschalen bei nichtlinearem Deformationsverhalten. PhD Thesis, TU Dresden

  34. Verfürth R (1995) A review of a posteriori error estimation and adaptive mesh-refinement techniques. J. Wiley, Chichester

    Google Scholar 

  35. Wahlbin L (1995) Superconvergence in Galerkin finite element methods. Lecture notes in mathematics. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  36. Wiberg N-E, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and equilibrium. Int J Numer Methods Eng 36:2703–2724

    Article  MATH  MathSciNet  Google Scholar 

  37. Wiberg NE, Li XD (1994) Superconvergent patch recovery based on finite element solution and a posteriori l 2 norm error estimate. Commun Appl Numer Methods 10:312–320

    MathSciNet  Google Scholar 

  38. Wiberg NE, Ziukas S (1998) Zienkiewicz–Zhu error estimator – a future vision. In: Oñate S, Dvorkin E (eds), Computational mechanics. New trends and applications. Idelsohn CIMNE, Barcelona

  39. Wiberg N-E, Abdulwahab F, Ziukas S (1993) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37:3417–3440

    Article  MathSciNet  Google Scholar 

  40. Wunderlich W, Cramer H, Findeiß R, Steinl G (2003) Numerical simulation of localization phenomena in geomechanics by extended continuum formulations. In: Stein E (eds) Error-controlled adaptive finite elements in solid mechanics. Wiley, Chichester, pp 109–146

    Google Scholar 

  41. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24:337–357

    Article  MATH  MathSciNet  Google Scholar 

  42. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates Part 1: The recovery technique. Int J Numer Methods Eng 33:1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  43. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33:1365–1382

    Article  MATH  MathSciNet  Google Scholar 

  44. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and adaptive finite element refinement. Comput Method Appl Mech Eng 101:207–224

    Article  MATH  MathSciNet  Google Scholar 

  45. Zienkiewicz OC, Zhu JZ, Wu J (1993) Superconvergent patch recovery techniques – some further tests. Commun Appl Numer Methods 9:251–258

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bucher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucher, A., Meyer, A., Görke, U.J. et al. A Comparison of Mapping Algorithms for Hierarchical Adaptive FEM in Finite Elasto-Plasticity. Comput Mech 39, 521–536 (2007). https://doi.org/10.1007/s00466-006-0051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0051-z

Keywords

Navigation