Skip to main content
Log in

Alleviation of metal and BTEX inhibition on BTEX degradation using PVA-immobilized degrader: kinetic model of BTEX degradation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Alleviation of metal inhibition on BTEX degradation using PVA-immobilized degrader (Mycobacterium sp. CHXY119) was investigated. When BTEX of 29 mg L−1 [B:T:E:X = 1:1:1:1 (mg)] was used, more than 99 % of BTEX was simultaneously degraded by the free cells within 170 h. In contrast, BTEX of 114–172 mg L−1 seriously inhibited degradation. High concentrations of metals (Mn2+: 15, Ni2+: 10, and Zn2+: 10 mg L−1) also strongly inhibited BTEX degradation by the free cells at BTEX of 29 mg L−1. Immobilization of degraders alleviated the inhibition of BTEX and heavy metals at high concentrations. A modified non-competitive inhibition model well described the BTEX degradation by the free and immobilized cells in the absence and presence of metal ions (R 2 = 0.92–0.99). The above results provide valuable information on treatment of metal-BTEX co-contaminated wastewater by the immobilized degrader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lin CW, Lin HC, Lai CY (2007) MTBE biodegradation and degrader microbial community dynamics in MTBE, BTEX, and heavy metal-contaminated water. Int Biodeterior Biodegrad 59:97–102

    Article  CAS  Google Scholar 

  2. Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551

    Article  Google Scholar 

  3. Pérez RM, Cabrera G, Gómez JM, Ábalos A, Cantero D (2010) Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters. J Hazard Mater 182:896–902

    Article  Google Scholar 

  4. Durmusoglu E, Taspinar F, Karademir A (2010) Health risk assessment of BTEX emissions in the landfill environment. J Hazard Mater 176:870–877

    Article  CAS  Google Scholar 

  5. Singh D, Fulekar MH (2010) Biodegradation of petroleum hydrocarbons by Pseudomonas putida strain MHF 7109. Clean Soil Air Water 38:781–786

    Article  CAS  Google Scholar 

  6. Littlejohns JV, Daugulis AJ (2008) Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium. Process Biochem 43:1068–1076

    Article  CAS  Google Scholar 

  7. Robledo-Ortíz JR, Ramírez-Arreola DE, Pérez-Fonseca AA, Gómez C, González-Reynoso O, Ramos-Quirarte J, González-Núñez R (2011) Benzene, toluene, and o-xylene degradation by free and immobilized P. putida F1 of postconsumer agave-fiber/polymer foamed composites. Int Biodeterior Biodegrad 65:539–546

    Article  Google Scholar 

  8. Trigueros DEG, Módenes AN, Kroumov AD, Espinoza-Quiñones FR (2010) Modeling of biodegradation process of BTEX compounds: kinetic parameters estimation by using Particle Swarm Global Optimizer. Process Biochem 45:1355–1361

    Article  CAS  Google Scholar 

  9. Tiwari KK, Singh NK, Patel MP, Tiwari MR, Rai UN (2011) Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicol Environ Saf 74:1670–1677

    Article  CAS  Google Scholar 

  10. Kumar R, Bhatia D, Singh R, Bishnoi NR (2012) Metal tolerance and sequestration of Ni(II), Zn(II) and Cr(VI) ions from simulated and electroplating wastewater in batch process: kinetics and equilibrium study. Int Biodeterior Biodegrad 66:82–90

    Article  CAS  Google Scholar 

  11. Samia K, Abdelkarim C, Yassin H, Teruo H (2012) The effect of long-term soil irrigation by wastewater on organic matter, polycyclic aromatic hydrocarbons, and heavy metals evolution: case study of Zaouit Sousse (Tunisia). Arab J Geosci. 1–10

  12. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92:2355–2388

    Article  CAS  Google Scholar 

  13. Lin Y-B, Lin Y-P, Liu C-W, Tan Y-C (2006) Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan. Sci Total Environ 370:168–181

    Article  CAS  Google Scholar 

  14. Huang K-M, Lin S (2003) Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere 53:1113–1121

    Article  CAS  Google Scholar 

  15. Khattabi H, Mania J, Aleya L, Bouchaou L, Mudry J, Grisey H (2002) Apport de certains traceurs physico-chimiques à l’étude de la contamination des eaux souterraines par les lixiviats de décharges contribution of several physico-chemical tracers to the study of groundwater contamination by landfill leachates. Environ Technol 23:719–729

    Article  CAS  Google Scholar 

  16. Qian G, Chen W, Lim TT, Chui P (2009) In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives. J Hazard Mater 170:1093–1100

    Article  CAS  Google Scholar 

  17. Gopinath KP, Kathiravan MN, Srinivasan R, Sankaranarayanan S (2011) Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresour Technol 102:3687–3693

    Article  CAS  Google Scholar 

  18. Banerjee A, Ghoshal AK (2011) Phenol degradation performance by isolated Bacillus cereus immobilized in alginate. Int Biodeterior Biodegrad 65:1052–1060

    Article  CAS  Google Scholar 

  19. Sanjeev Kumar S, Kumar MS, Siddavattam D, Karegoudar TB (2012) Generation of continuous packed bed reactor with PVA–alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N, N-dimethylformamide from industrial effluents. J Hazard Mater 199–200:58–63

    Article  Google Scholar 

  20. Shim H, Yang ST (2002) BTEX removal from contaminated groundwater by a co-culture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a continuous fibrous-bed bioreactor. J Chem Technol Biotechnol 77:1308–1315

    Article  CAS  Google Scholar 

  21. Zain NAM, Suhaimi MS, Idris A (2011) Development and modification of PVA-alginate as a suitable immobilization matrix. Process Biochem 46:2122–2129

    Article  CAS  Google Scholar 

  22. Cheng Y, Lin HY, Chen ZL, Megharaj M, Naidu R (2012) Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads. Ecotoxicol Environ Saf 83:108–114

    Article  CAS  Google Scholar 

  23. Lin CW, Wu CH, Tang CT, Chang SH (2012) Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresour Technol 124:45–51

    Article  CAS  Google Scholar 

  24. Lin CW, Cheng YW, Tsai SL (2007) Multi-substrate biodegradation kinetics of MTBE and BTEX mixtures by Pseudomonas aeruginosa. Process Biochem 42:1211–1217

    Article  CAS  Google Scholar 

  25. Ren S, Frymier PD (2003) Kinetics of the toxicity of metals to luminescent bacteria. Adv Environ Res 7:537–547

    Article  CAS  Google Scholar 

  26. Okpokwasili GC, Nweke CO (2005) Microbial growth and substrate utilization kinetics. Afr J Biotechnol 5:305–317

    Google Scholar 

  27. Lin CW, Cheng YW, Tsai SL (2007) Influences of metals on kinetics of methyl tert-butyl ether biodegradation by Ochrobactrum cytisi. Chemosphere 69:1485–1491

    Article  CAS  Google Scholar 

  28. Lin CW, Cheng YW (2007) Biodegradation kinetics of benzene, methyl tert-butyl ether, and toluene as a substrate under various substrate concentrations. J Chem Technol Biotechnol 82:51–57

    Article  CAS  Google Scholar 

  29. Lin CW, Chen LH, I YP, Lai CY (2010) Microbial communities and biodegradation in lab-scale BTEX-contaminated groundwater remediation using an oxygen-releasing reactive barrier. Bioprocess Biosyst Eng 33:383–391

    Article  CAS  Google Scholar 

  30. Chen KC, Lin YF (1994) Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme Microb Technol 16:79–83

    Article  CAS  Google Scholar 

  31. An M, Lo KV (2001) Activated sludge immobilization using the PVA-alginate-borate method. Environ Sci Health A Tox Hazard Subst Environ Eng 36:101–115

    Article  CAS  Google Scholar 

  32. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  33. Muñoz R, Díaz LF, Bordel S, Villaverde S (2007) Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures. Chemosphere 68:244–252

    Article  Google Scholar 

  34. Wang F, Hu Y, Guo C, Huang W, Liu C-Z (2012) Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour Technol 110:120–124

    Article  CAS  Google Scholar 

  35. Ha J, Engler CR, Wild JR (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100:1138–1142

    Article  CAS  Google Scholar 

  36. Jansen E, Michels M, Til M, Doelman P (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soil 17:177–184

    Article  Google Scholar 

  37. Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl Environ Microbiol 60:2593–2596

    CAS  Google Scholar 

  38. Awasthi M, Rai LC (2005) Toxicity of nickel, zinc, and cadmium to nitrate uptake in free and immobilized cells of Scenedesmus quadricauda. Ecotoxicol Environ Saf 61:268–272

    Article  CAS  Google Scholar 

  39. Chung TP, Tseng HY, Juang RS (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem 38:1497–1507

    Article  CAS  Google Scholar 

  40. Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093–1101

    Article  CAS  Google Scholar 

  41. Ore S, Mertens J, Brandt KK, Smolders E (2010) Copper toxicity to bioluminescent nitrosomonas europaea in soil Is explained by the free metal ion activity in pore water. Environ Sci Technol 44:9201–9206

    Article  CAS  Google Scholar 

  42. Poulson SR, Colberg PJS, Drever JI (1997) Toxicity of heavy metals (Ni, Zn) to desulfovibrio desulfuricans. Geomicrobiol J 14:41–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 100-2815-C-224-012-E. The authors also wish to thank Mr. Cheng-Ting Tsai of our laboratory (Undergraduate at National Yunlin University of Science and Technology) for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hsien Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CW., Wu, CH., Sun, HC. et al. Alleviation of metal and BTEX inhibition on BTEX degradation using PVA-immobilized degrader: kinetic model of BTEX degradation. Bioprocess Biosyst Eng 37, 1085–1093 (2014). https://doi.org/10.1007/s00449-013-1080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1080-6

Keywords

Navigation