Skip to main content
Log in

Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Spatial heterogeneities in the abundance of free-living organisms as well as in infection levels of their parasites are a common phenomenon, but knowledge on parasitism in invertebrate intermediate hosts in this respect is scarce. We investigated the spatial pattern of four dominant trematode species which utilize a common intertidal bivalve, the cockle Cerastoderma edule, as second intermediate host in their life cycles. Sampling of cockles from the same cohort at 15 sites in the northern Wadden Sea (North Sea) over a distance of 50 km revealed a conspicuous spatial heterogeneity in infection levels in all four species over the total sample as well as among and within sampling sites. Whereas multiple regression analyses indicated the density of first intermediate upstream hosts to be the strongest determinant of infection levels in cockles, the situation within sites was more complex with no single strong predictor variable. However, host size was positively and host density negatively correlated with infection levels and there was an indication of differential susceptibility of cockle hosts. Small-scale differences in physical properties of the habitat in the form of residual water at low tide resulted in increased infection levels of cockles which we experimentally transferred into pools. A complex interplay of these factors may be responsible for within-site heterogeneities. At larger spatial scales, these factors may be overridden by the strong effect of upstream hosts. In contrast to first intermediate trematode hosts, there was no indication for inter-specific interactions. In other terms, the recruitment of trematodes in second intermediate hosts seems to be largely controlled by pre-settlement processes both among and within host populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, Chicago, Ill.

    Google Scholar 

  • Begon M, Harper JL, Townshend CR (1996) Ecology. Individuals, populations and communities. Blackwell Science, Oxford

    Google Scholar 

  • Boulinier T, Ives AR, Danchin E (1996) Measuring aggregation of parasites at different host population levels. Parasitology 112:581–587

    Google Scholar 

  • Combes C (2001) Parasitism. The ecology and evolution of intimate interactions. University of Chicago Press, Chicago, Ill.

    Google Scholar 

  • Connell JH (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am Nat 122:661–696

    Article  Google Scholar 

  • Esch GE, Curtis LA, Barger MA (2001) A perspective on the ecology of trematode communities in snails. Parasitology 123:S57–S75

    Article  PubMed  Google Scholar 

  • Fernandez J, Esch GW (1991) Guild structure of larval trematodes in the snail Helisoma anceps: patterns and processes at the individual level. J Parasitol 77:528–539

    Article  PubMed  CAS  Google Scholar 

  • Fredensborg BL, Mouritsen KN, Poulin R (2006) Relating bird host distribution and spatial heterogeneity in trematode infections in an intertidal snail—from small to large scale. Mar Biol 149:275–283

    Article  Google Scholar 

  • Gätje C, Reise K (1998) Ökosystem Wattenmeer, Austausch-, Transport- und Stoffumwandlungsprozesse. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Grosholz ED (1994) The effects of host genotype and spatial distribution on trematode parasitism in a bivalve population. Evolution 48: 1514–1524

    Article  Google Scholar 

  • Hechinger RF, Lafferty KD (2005) Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc Biol Sci 272:1059–1066

    Article  PubMed  Google Scholar 

  • Kareiva P, Tilman D (eds) (1998) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, N.J.

  • Kuris AM (1990) Guild structure of larval trematodes in molluscan hosts: prevalence, dominance, and significance of competition. In: Esch GW, Bush AO, Aho JM (eds) Parasite communities: patterns and processes. Chapman & Hall, London, pp 69–100

    Google Scholar 

  • Kuris AM, Lafferty KD (1994) Community structure: larval trematodes in snail hosts. Annu Rev Ecol Syst 25:189–217

    Article  Google Scholar 

  • Lackschewitz D, Menn I, Reise K (2002) Das marine Ökosystem um Sylt unter veränderten Klimabedingungen. In: Daschkeit H, Schottes P (eds) Klimafolgen für Mensch und Küste am Beispiel der Nordseeinsel Sylt. Springer, Berlin Heidelberg New York, pp 153–180

    Google Scholar 

  • Lauckner G (1971) Zur Trematodenfauna der Herzmuscheln Cardium edule und Cardium lamarcki. Helgol Wiss Meeresunt 22:377–400

    Article  Google Scholar 

  • Lauckner G (1980) Diseases of Mollusca: Gastropoda. In: Kinne O (ed) Diseases of marine animals, vol I. General aspects, Protozoa to gastropoda. Wiley, New York, pp 311–424

  • Lauckner G (1983) Diseases of Molusca: Bivalvia. In: Kinne O (eds) Diseases of marine animals, vol 2 .Introduction, Bivalvia to Scaphopoda. Biologische Anstalt Helgoland, Hamburg, pp 477–961

  • Lepitzki DAW, Scott ME, McLaughlin JD (1994) Influence of storage and examination methods on the recovery and size of metacercariae of Cyathocotyle bushiensis and Sphaeridiotrema pseudoglobulus (Digenea). J Parasitol 80:454–460

    Article  PubMed  CAS  Google Scholar 

  • Loos-Frank B (1967) Experimentelle Untersuchungen über Bau, Entwicklung und Systematik der Himastlinae (Trematoda, Echinostomatidae) des Nordseeraumes. Z Parasitenkd 28:299–351

    Article  PubMed  CAS  Google Scholar 

  • Montaudouin X de, Kisielewski I, Bachelet G, Desclaux C (2000) A census of macroparasites in an intertidal bivalve community, Arcachon Bay, France. Oceanol Acta 23:453-468

    Article  Google Scholar 

  • Mouritsen KN, McKechnie S, Meenken E, Toynbee JL, Poulin R (2003) Spatial heterogeneity in parasite loads in the New Zealand cockle: the importance of host condition and density. J Mar Biol Assoc UK 83:307–310

    Article  Google Scholar 

  • Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20:328–336

    Article  PubMed  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  • Pietrock M, Marcogliese DJ (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol 19:293–299

    Article  PubMed  Google Scholar 

  • Poulin R (2006) Global warming and temperature-mediated increases in cercarial emergence in trematode species. Parasitology 132:134–151

    Article  Google Scholar 

  • Poulin R, Mouritsen KN (2004) Small-scale spatial variation in rates of metacercarial accumulation by a bivalve second intermediate host. J Mar Biol Assoc UK 84:1209–1212

    Article  Google Scholar 

  • Poulin R, Rate SR (2001) Small-scale heterogeneity in infection levels by symbionts of the amphipod Talorchesta quoyana (Talitridae). Mar Ecol Prog Ser 212:211–216

    Google Scholar 

  • Poulin R, Steeper MJ, Miller AA (2000) Non-random patterns of host use by the different parasite species exploiting a cockle population. Parasitology 121:289–295

    Article  PubMed  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Rantanen J, Valtonen E, Holopainen I (1998) Digenean parasites of the bivalve mollusc Pisidium amnicum in a small river in eastern Finland. Dis Aquat Org 33:201–208

    PubMed  CAS  Google Scholar 

  • Rohde K (1979) A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. Am Nat 114:648–671

    Article  Google Scholar 

  • Rohde K (1994) Niche restriction in parasites: proximate and ultimate causes. Parasitology 109:69–84

    Google Scholar 

  • Shaw DJ, Dobson AP (1995) Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111:S111–S133

    Article  PubMed  Google Scholar 

  • Sousa WP (1990) Spatial scale and the processes structuring a guild of larval trematode parasites. In: Esch GW, Bush AO. Aho JM (eds) Parasite communities: patterns and processes. Chapman & Hall, London, pp 41–67

    Google Scholar 

  • Thieltges DW, Reise K (2006a) Metazoan parasites in intertidal cockles (Cerastoderma edule) from the northern Wadden Sea. J Sea Res (in press)

  • Thieltges DW, Rick J (2006b) Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis Aquat Organ (in press)

  • Thomas F, Poulin R (1998) Manipulation of a mollusc by a trophically transmitted parasite: convergent evolution ot phylogenetic inheritance? Parasitology 116:431–436

    Article  PubMed  Google Scholar 

  • Thomas F, Mete K, Helluy S, Santalla F, Verneau O, Meeus T de, Cezilly F, Renaud F (1997) Hitch-hiker parasites or how to benefit from the strategy of another parasite. Evolution 51:1316–1318

    Article  Google Scholar 

  • Thomas F, Renaud F, Poulin R (1998) Exploitation of manipulators: “hitch-hiking" as a parasite transmission strategy. Anim Behav 56:199–206

    Article  PubMed  Google Scholar 

  • Wegeberg AM, Jensen KT (2003) In situ growth of juvenile cockles, Cerastoderma edule, experimentally infected with larval trematodes (Himasthla interrupta). J Sea Res 50:37– 43

    Article  Google Scholar 

  • Wegeberg AM, Montaudouin X de, Jensen KT (1999) Effect of intermediate host size (Cerastoderma edule) on infectivity of cercariae of three Himasthla species (Echinostomatidae, Trematoda). J Exp Mar Biol Ecol 238:259–269

    Article  Google Scholar 

  • Werding B (1969) Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Mar Biol 3:306–333

    Article  Google Scholar 

  • Wetzel EJ, Shreve EW (2003) The influence of habitat on the distribution and abundance of Marovestibulum obtusicaudum (Pronocephalidae) in a small Indina stream. J Parasitol 89:1088–1090

    Article  PubMed  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wilson K, Bjornstad ON, Dobson AP, Merler S, Poglayen G, Randolph SE, Read AF, Skorping A (2002) Heterogeneities in macroparasite infections: patterns and processes. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek, Dobson AP (eds) The ecology of wildlife diseases. Oxford Univeristy Press, Oxford, pp 6–44

    Google Scholar 

Download references

Acknowledgements

We wish to thank Jan Fermer, Kristin Finger, Doreen Kazmierczak, Sylvia Pross and Katrin Prinz for their help in the field and laboratory. Dörte Poszig is thanked for assisting in a laborious field campaign. Werner Armonies and three anonymous referees considerably helped to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Thieltges.

Additional information

Communicated by Martin Attrill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thieltges, D.W., Reise, K. Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve. Oecologia 150, 569–581 (2007). https://doi.org/10.1007/s00442-006-0557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-006-0557-2

Keywords

Navigation