Skip to main content
Log in

Cholecystokinin in the central nervous system of the sea lamprey Petromyzon marinus: precursor identification and neuroanatomical relationships with other neuronal signalling systems

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Cholecystokinin (CCK) is a neuropeptide that modulates processes such as digestion, satiety, and anxiety. CCK-type peptides have been characterized in jawed vertebrates and invertebrates, but little is known about CCK-type signalling in the most ancient group of vertebrates, the agnathans. Here, we have cloned and sequenced a cDNA encoding a sea lamprey (Petromyzon marinus L.) CCK-type precursor (PmCCK), which contains a CCK-type octapeptide sequence (PmCCK-8) that is highly similar to gnathostome CCKs. Using mRNA in situ hybridization, the distribution of PmCCK-expressing neurons was mapped in the CNS of P. marinus. This revealed PmCCK-expressing neurons in the hypothalamus, posterior tubercle, prethalamus, nucleus of the medial longitudinal fasciculus, midbrain tegmentum, isthmus, rhombencephalic reticular formation, and the putative nucleus of the solitary tract. Some PmCCK-expressing neuronal populations were only observed in adults, revealing important differences with larvae. We generated an antiserum to PmCCK-8 to enable immunohistochemical analysis of CCK expression, which revealed that GABA or glutamate, but not serotonin, tyrosine hydroxylase or neuropeptide Y, is co-expressed in some PmCCK-8-immunoreactive (ir) neurons. Importantly, this is the first demonstration of co-localization of GABA and CCK in neurons of a non-mammalian vertebrate. We also characterized extensive cholecystokinergic fibre systems of the CNS, including innervation of habenular subnuclei. A conspicuous PmCCK-8-ir tract ascending in the lateral rhombencephalon selectively innervates a glutamatergic population in the dorsal isthmic grey. Interestingly, this tract is reminiscent of the secondary gustatory/visceral tract of teleosts. In conclusion, this study provides important new information on the evolution of the cholecystokinergic system in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

ALL:

Anterior lateral line nerve

ARRN:

Anterior rhombencephalic reticular nucleus

B3:

Rhombencephalic Müller cell 3

Ch:

Optic chiasm

dc:

Dorsal cell

DC:

Dorsal column

DCN:

Dorsal column nucleus

DHyp:

Dorsal hypothalamus

dic:

Dorsal isthmic commissure

DIG:

Dorsal isthmic grey

DN:

Dorsal nucleus of the octavolateralis area

dV:

Descending trigeminal root

Em:

Prethalamic eminence

fr:

Fasciculus retroflexus

GABA:

Gamma-aminobutyric acid

Gl:

Glomerular layer of olfactory bulb

Ha:

Habenula

NH:

Neurohypophysis

Hyp:

Hypothalamus

I1:

Giant isthmic neuron

IIId:

Oculomotor nucleus, dorsal subnucleus

III-l:

Oculomotor nucleus, lateral subnucleus

IP:

Interpeduncular nucleus

IS:

Isthmus

ISd:

Dorsal isthmus region

ISv:

Ventral isthmus region

IV:

Trochlear nucleus

IXm:

Glossopharyngeal motor nucleus

lHa:

Left habenula

LHyp:

Lateral hypothalamus

LP:

Lateral pallium

LPd:

Lateral pallium, dorsal part

LPv:

Lateral pallium, ventral part

LT:

Lamina terminalis

M:

Mesencephalon

M1–3:

Giant Müller cells 1–3

M5:

Nucleus M5 of Schober

Ma:

Mammillary nucleus

mlf:

Medial longitudinal fasciculus

MN:

Medial nucleus of the octavolateralis area

MP:

Medial pallium

Mr:

Mammillary recess

MRRN:

Medial rhombencephalic reticular nucleus

Mth:

Mauthner neuron

NH:

Neurohypophysis

Nmlf:

Nucleus of the medial longitudinal fasciculus

OB:

Olfactory bulb

OLA:

Octavolateralis area

OMa:

Octavomotor anterior nucleus

ON:

Optic nerve

OT:

Optic tectum

ot:

Optic tract

P:

Pineal organ

PC:

Posterior commissure

pl:

Choroid plexus

PLL:

Posterior lateral line nerve

Pm:

Petromyzon marinus

PO:

Preoptic nucleus

PoC:

Nucleus of the postoptic commissure

PoR:

Postoptic recess

prIII:

Perioculomotor region

PRRN:

Posterior rhombencephalic reticular nucleus

PT:

Pretectum

PTh:

Prethalamus

PTN:

Posterior tubercle nucleus

Rh:

Rhombencephalon

rHa:

Right habenula

N-SC:

Neurobiotin labelling from the spinal cord

NPY:

Neuropeptide Y

SC:

Spinal cord

ShL:

Subhippocampal lobe

sl:

Sulcus limitans

So:

Nucleus of the solitary tract

SOC:

Spino‐occipital motor column

Sp:

Septum

Str:

Striatum

TH:

Tyrosine hydroxylase

Th:

Thalamus

TS:

Torus semicircularis

v:

Ventricle

VIIm:

Facial motor nucleus

VIII:

Octaval nerve

VHyp:

Ventral hypothalamus

Vm:

Trigeminal motor nucleus

VN:

Ventral nucleus of the octavolateralis area

Vs:

Trigeminal spinal nucleus

Xm:

Vagal motor nucleus

zl:

Zona limitans intrathalamica

References

  • Abalo XM, Villar-Cheda B, Meléndez-Ferro M, Pérez-Costas E, Anadón R, Rodicio MC (2007) Development of the serotonergic system in the central nervous system of the sea lamprey. J Chem Neuroanat 34:29–46

    CAS  PubMed  Google Scholar 

  • Abalo XM, Villar-Cerviño V, Villar-Cheda B, Anadón R, Rodicio MC (2008) Neurochemical differentiation of horizontal and amacrine cells during transformation of the sea lamprey retina. J Chem Neuroanat 35:225–232

    CAS  PubMed  Google Scholar 

  • Adám AS, Csillag A (2006) Differential distribution of l-aspartate- and l-glutamate-immunoreactive structures in the arcopallium and medial striatum of the domestic chick (Gallus domesticus). J Comp Neurol 498:266–276

    PubMed  Google Scholar 

  • Agersnap M, Zhang MD, Harkany T, Hökfelt T, Rehfeld JF (2016) Nonsulfated cholecystokinins in cerebral neurons. Neuropeptides 60:37–44

    CAS  PubMed  Google Scholar 

  • Anadón R, Meléndez-Ferro M, Pérez-Costas E, Pombal MA, Rodicio MC (1998) Centrifugal fibers are the only GABAergic structures of the retina of the larval sea lamprey: an immunocytochemical study. Brain Res 782:297–302

    PubMed  Google Scholar 

  • Atoji Y, Karim MR (2014) Homology of the mesopallium in the adult chicken identified by gene expression of the neocortical marker cholecystokinin. Neurosci Lett 562:85–89

    CAS  PubMed  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cerviño V, Anadón R, Rodicio MC (2008a) Development and organization of the descending serotonergic brainstem-spinal projections in the sea lamprey. J Chem Neuroanat 36:77–84

    CAS  PubMed  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cerviño V, Anadón R, Rodicio MC (2008b) Descending brain-spinal cord projections in a primitive vertebrate, the lamprey: cerebrospinal fluid-contacting and dopaminergic neurons. J Comp Neurol 511:711–723

    PubMed  Google Scholar 

  • Barreiro-Iglesias A, Cornide-Petronio ME, Anadón R, Rodicio MC (2009a) Serotonin and GABA are colocalized in restricted groups of neurons in the larval sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. J Anat 215:435–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cerviño V, Anadón R, Rodicio MC (2009b) Dopamine and gamma-aminobutyric acid are colocalized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. J Anat 215:601–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barreiro-Iglesias A, Anadón R, Rodicio MC (2010a) New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities. Neuroscience 167:396–413

    CAS  PubMed  Google Scholar 

  • Barreiro-Iglesias A, Laramore C, Shifman MI, Anadón R, Selzer ME, Rodicio MC (2010b) The sea lamprey tyrosine hydroxylase: cDNA cloning and in situ hybridization study in the brain. Neuroscience 168:659–669

    CAS  PubMed  Google Scholar 

  • Barreiro-Iglesias A, Fernández-López B, Sobrido-Cameán D, Anadón R (2017) Organization of alpha-transducin immunoreactive system in the brain and retina of larval and young adult sea lamprey (Petromyzon marinus), and their relationship with other neural systems. J Comp Neurol 525:3683–3704

    CAS  PubMed  Google Scholar 

  • Barrington EJW, Dockray GJ (1970) The effect of intestinal extracts of lampreys (Lampetra fluviatilis and Petromyzon marinus) on pancreatic secretion in the rat. Gen Comp Endocrinol 14:170–177

    CAS  PubMed  Google Scholar 

  • Batten TF, Cambre ML, Moons L, Vandesande F (1990) Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J Comp Neurol 302:893–919

    CAS  PubMed  Google Scholar 

  • Beinfeld MC (2001) An introduction to neuronal cholecystokinin. Peptides 22:1197–1200

    CAS  PubMed  Google Scholar 

  • Boswell T, Li Q (1998) Cholecystokinin induces Fos expression in the brain of the Japanese quail. Horm Behav 34:56–66

    CAS  PubMed  Google Scholar 

  • Bowers ME, Ressler KJ (2015) Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention. Neuropsychopharmacology 40:688–700

    CAS  PubMed  Google Scholar 

  • Brodin L, Buchanan JT, Hökfelt T, Grillner S, Rehfeld JF, Frey P et al (1988) Immunohistochemical studies of cholecystokininlike peptides and their relation to 5-HT, CGRP, and bombesin immunoreactivities in the brainstem and spinal cord of lampreys. J Comp Neurol 271:1–18

    CAS  PubMed  Google Scholar 

  • Brodin L, Rawitch A, Taylor T, Ohta Y, Ring H, Hökfelt T et al (1989) Multiple forms of pancreatic polypeptide related compounds in the lamprey CNS: partial characterization and immunohistochemical localization in the brain stem and spinal cord. J Neurosci 9:3428–3442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan JT, Brodin L, Hökfelt T, Van Dongen PA, Grillner S (1987) Survey of neuropeptide-like immunoreactivity in the lamprey spinal cord. Brain Res 408:299–302

    CAS  PubMed  Google Scholar 

  • Burgunder JM, Young WS 3rd (1988) The distribution of thalamic projection neurons containing cholecystokinin messenger RNA, using in situ hybridization histochemistry and retrograde labeling. Brain Res 464:179–189

    CAS  PubMed  Google Scholar 

  • Burgunder JM, Young WS 3rd (1989a) Ontogeny of cholecystokinin gene expression in the rat thalamus—a hybridization histochemical study. Brain Res Dev Brain Res 46:221–232

    CAS  PubMed  Google Scholar 

  • Burgunder JM, Young WS 3rd (1989b) Neurons containing cholecystokinin mRNA in the mammillary region: ontogeny and adult distribution in the rat. Cell Mol Neurobiol 9:281–294

    CAS  PubMed  Google Scholar 

  • Burgunder JM, Young WS 3rd (1990a) Cortical neurons expressing the cholecystokinin gene in the rat: distribution in the adult brain, ontogeny, and some of their projections. J Comp Neurol 300:26–46

    CAS  PubMed  Google Scholar 

  • Burgunder JM, Young WS 3rd (1990b) Ontogeny of tyrosine hydroxylase and cholecystokinin gene expression in the rat mesencephalon. Brain Res Dev Brain Res 52:85–93

    CAS  PubMed  Google Scholar 

  • Cano V, Ezquerra L, Ramos MP, Ruiz-Gayo M (2003) Characterization of the role of endogenous cholecystokinin on the activity of the paraventricular nucleus of the hypothalamus in rats. Br J Pharmacol 140:964–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capantini L, von Twickel A, Robertson B, Grillner S (2017) The pretectal connectome in lamprey. J Comp Neurol 525:753–772

    CAS  PubMed  Google Scholar 

  • Carrera I, Molist P, Anadón R, Rodríguez-Moldes I (2008) Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. J Comp Neurol 511:804–831

    CAS  PubMed  Google Scholar 

  • Chandra R, Liddle RA (2007) Cholecystokinin. Curr Opin Endocrinol Diabetes Obes 14:63–67

    CAS  PubMed  Google Scholar 

  • Cho HJ, Shiotani Y, Shiosaka S, Inagaki S, Kubota Y, Kiyama H et al (1983) Ontogeny of cholecystokinin-8-containing neuron system of the rat: an immunohistochemical analysis. I. Forebrain and upper brainstem. J Comp Neurol 218:25–41

    CAS  PubMed  Google Scholar 

  • Conlon JM, Schwartz TW, Rehfeld JF (1988) Sulphated CCK-8-like peptides in the neural ganglion of the protochordate Ciona intestinalis. Regul Pept 20:241–250

    CAS  PubMed  Google Scholar 

  • Cornide-Petronio ME, Ruiz MS, Barreiro-Iglesias A, Rodicio MC (2011) Spontaneous regeneration of the serotonergic descending innervation in the sea lamprey after spinal cord injury. J Neurotrauma 28:2535–2540

    PubMed  Google Scholar 

  • Cornide-Petronio ME, Anadón R, Rodicio MC, Barreiro-Iglesias A (2013) The sea lamprey tryptophan hydroxylase: new insight into the evolution of the serotonergic system of vertebrates. Brain Struct Funct 218:587–593

    CAS  PubMed  Google Scholar 

  • Cornide-Petronio ME, Anadón R, Barreiro-Iglesias A, Rodicio MC (2015) Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey. Exp Eye Res 135:81–87

    CAS  PubMed  Google Scholar 

  • Crosby KM, Baimoukhametova DV, Bains JS, Pittman QJ (2015) Postsynaptic depolarization enhances GABA drive to dorsomedial hypothalamic neurons through somatodendritic cholecystokinin release. J Neurosci 35:13160–13170

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Arriba M-del-C, Pombal MA (2007) Afferent connections of the optic tectum in lampreys: an experimental study. Brain Behav Evol 69:37–68

    Google Scholar 

  • De Belleroche J, Bandopadhyay R, King A, Malcolm AD, O’Brien K, Premi BP, Rashid A (1990) Regional distribution of cholecystokinin messenger RNA in rat brain during development: quantitation and correlation with cholecystokinin immunoreactivity. Neuropeptides 15:201–212

    PubMed  Google Scholar 

  • de Miguel E, Anadón R (1987) The development of retina and the optic tectum of Petromyzon marinus, L. A light microscopic study. J Hirnforsch 28:445–456

    PubMed  Google Scholar 

  • de Miguel E, Rodicio MC, Anadón R (1990) Organization of the visual system in larval lampreys: an HRP study. J Comp Neurol 302:529–542

    PubMed  Google Scholar 

  • Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak M-K, Turon X, López-Legentil S, Piette J, Lemaire P, Douzery EJP (2018) A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol 16:39

    PubMed  PubMed Central  Google Scholar 

  • Deschenes RJ, Haun RS, Funckes CL, Dixon JE (1985) A gene encoding rat cholecystokinin. Isolation, nucleotide sequence, and promoter activity. J Biol Chem 260:1280–1286

    CAS  PubMed  Google Scholar 

  • Dockray GJ (1977) Molecular evolution of gut hormones: application of comparative studies on the regulation of digestion. Gastroenterology 72:344–358

    CAS  PubMed  Google Scholar 

  • Dockray GJ (1980) Cholecystokinins in rat cerebral cortex: identification, purification and characterization by immunochemical methods. Brain Res 188:155–165

    CAS  PubMed  Google Scholar 

  • Dupré D, Tostivint H (2014) Evolution of the gastrin–cholecystokinin gene family revealed by synteny analysis. Gen Comp Endocrinol 195:164–173

    PubMed  Google Scholar 

  • Farrell WJ, Böttger B, Ahmadi F, Finger TE (2002) Distribution of cholecystokinin, calcitonin gene-related peptide, neuropeptide Y, and galanin in the primary gustatory nuclei of the goldfish. J Comp Neurol 450:103–114

    CAS  PubMed  Google Scholar 

  • Fernández-López B, Villar-Cerviño V, Valle-Maroto SM, Barreiro-Iglesias A, Anadón R, Rodicio MC (2012) The glutamatergic neurons in the spinal cord of the sea lamprey: an in situ hybridization and immunohistochemical study. PLoS One 7:e47898

    PubMed  PubMed Central  Google Scholar 

  • Fernández-López B, Barreiro-Iglesias A, Rodicio MC (2016) Anatomical recovery of the spinal glutamatergic system following a complete spinal cord injury in lampreys. Sci Rep 6:37786

    PubMed  PubMed Central  Google Scholar 

  • Fernández-López B, Sobrido-Cameán D, Anadón R, Rodicio MC, Barreiro-Iglesias A (2017) Restricted co-localization of glutamate and dopamine in neurons of the adult sea lamprey brain. J Anat 231:776–784

    PubMed  PubMed Central  Google Scholar 

  • Fox CA, Jeyapalan M, Ross LR, Jacobson CD (1991) Ontogeny of cholecystokinin-like immunoreactivity in the Brazilian opossum brain. Brain Res Dev Brain Res 64:1–18

    CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Google Scholar 

  • Giacobini P, Wray S (2008) Prenatal expression of cholecystokinin (CCK) in the central nervous system (CNS) of mouse. Neurosci Lett 438:96–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grillner S, von Twickel A, Robertson B (2018) The blueprint of the vertebrate forebrain—with special reference to the habenulae. Semin Cell Dev Biol 78:103–106

    CAS  PubMed  Google Scholar 

  • Gutièrrez-Mecinas M, Crespo C, Blasco-Ibáñez JM, Gracia-Llanes FJ, Marqués-Marí AI, Martínez-Guijarro FJ (2005) Characterization of somatostatin- and cholecystokinin-immunoreactive periglomerular cells in the rat olfactory bulb. J Comp Neurol 489:467–479

    PubMed  Google Scholar 

  • Hansen TV (2001) Cholecystokinin gene transcription: promoter elements, transcription factors and signaling pathways. Peptides 22:1201–1211

    CAS  PubMed  Google Scholar 

  • Hayes L, Zhang Z, Albert P, Zervas M, Ahn S (2011) Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol 519:3001–3018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermanson O, Larhammar D, Blomqvist A (1998) Preprocholecystokinin mRNA-expressing neurons in the rat parabrachial nucleus: subnuclear localization, efferent projection, and expression of nociceptive-related intracellular signaling substances. J Comp Neurol 400:255–270

    CAS  PubMed  Google Scholar 

  • Himick BA, Peter RE (1994) CCK/gastrin-like immunoreactivity in brain and gut, and CCK suppression of feeding in goldfish. Am J Physiol 267(3 Pt 2):R841–R851

    CAS  PubMed  Google Scholar 

  • Hökfelt T, Rehfeld JF, Skirboll L, Ivemark B, Goldstein M, Markey K (1980) Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature 285(5765):476–478

    PubMed  Google Scholar 

  • Hökfelt T, Herrera-Marschitz M, Seroogy K, Ju G, Staines WA et al (1988) Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequence specific antisera and with special reference to the caudate nucleus and primary sensory neurons. J Chem Neuroanat 1:11–51

    PubMed  Google Scholar 

  • Holmquist AL, Dockray GJ, Rosenquist GL, Walsh JH (1979) Immunochemical characterization of cholecystokinin-like peptides in lamprey gut and brain. Gen Comp Endocrinol 37:474–481

    CAS  PubMed  Google Scholar 

  • Honda T, Wada E, Battey JF, Wank SA (1993) Differential gene expression of CCK(A) and CCK(B) receptors in the rat brain. Mol Cell Neurosci 4:143–154

    CAS  PubMed  Google Scholar 

  • Ingram SM, Krause RG 2nd, Baldino F Jr, Skeen LC, Lewis ME (1989) Neuronal localization of cholecystokinin mRNA in the rat brain by using in situ hybridization histochemistry. J Comp Neurol 287:260–272

    CAS  PubMed  Google Scholar 

  • Innis RB, Aghajanian GK (1986) Cholecystokinin-containing and nociceptive neurons in rat Edinger–Westphal nucleus. Brain Res 363:230–238

    CAS  PubMed  Google Scholar 

  • Innis RB, Corrêa FM, Uhl GR, Schneider B, Snyder SH (1979) Cholecystokinin octapeptide-like immunoreactivity: histochemical localization in rat brain. Proc Natl Acad Sci USA 76:521–525

    CAS  PubMed  Google Scholar 

  • Ivy AC, Oldberg E (1928) A hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 86:559–613

    Google Scholar 

  • Jayaraman A, Nishimori T, Dobner P, Uhl GR (1990) Cholecystokinin and neurotensin mRNAs are differentially expressed in subnuclei of the ventral tegmental area. J Comp Neurol 296:291–302

    CAS  PubMed  Google Scholar 

  • Jensen H, Rourke IJ, Møller M, Jønson L, Johnsen AH (2001) Identification and distribution of CCK-related peptides and mRNAs in the rainbow trout, Oncorhynchus mykiss. Biochim Biophys Acta 1517:190–201

    CAS  PubMed  Google Scholar 

  • Jiménez AJ, Mancera JM, Pombal MA, Pérez-Fígares JM, Fernández-Llebrez P (1996) Distribution of galanin-like immunoreactive elements in the brain of the adult lamprey Lampetra fluviatilis. J Comp Neurol 368:185–197

    PubMed  Google Scholar 

  • Johnsen AH, Jonson L, Rourke IJ, Rehfeld JF (1997) Elasmobranchs express separate cholecystokinin and gastrin genes. Proc Natl Acad Sci USA 94:10221–10226

    CAS  PubMed  Google Scholar 

  • Koyama H (2005) Organization of the sensory and motor nuclei of the glossopharyngeal and vagal nerves in lampreys. Zool Sci 22:469–476

    PubMed  Google Scholar 

  • Kubota Y, Inagaki S, Shiosaka S, Cho HJ, Tateishi K, Hashimura E et al (1983) The distribution of cholecystokinin octapeptide-like structures in the lower brain stem of the rat: an immunohistochemical analysis. Neuroscience 9:587–604

    CAS  PubMed  Google Scholar 

  • Kubota Y, Hattori R, Yui Y (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res 649:159–173

    CAS  PubMed  Google Scholar 

  • Kurokawa T, Suzuki T, Hashimoto H (2003) Identification of gastrin and multiple cholecystokinin genes in teleost. Peptides 24:227–235

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Hawkes R (1997) A search for primitive Purkinje cells: zebrin II expression in sea lampreys (Petromyzon marinus). Neurosci Lett 237:53–55

    CAS  PubMed  Google Scholar 

  • Larson LI, Rehfeld JF (1979) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165:201–218

    Google Scholar 

  • Lee MC, Schiffman SS, Pappas TN (1994) Role of neuropeptides in the regulation of feeding behavior: a review of cholecystokinin, bombesin, neuropeptide Y, and galanin. Neurosci Biobehav Rev 18:313–323

    CAS  PubMed  Google Scholar 

  • Liu CJ, Grandes P, Matute C, Cuénod M, Streit P (1989) Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method. Histochemistry 90:427–445

    CAS  PubMed  Google Scholar 

  • Lovell PV, Mello CV (2011) Brain expression and song regulation of the cholecystokinin gene in the zebra finch (Taeniopygia guttata). J Comp Neurol 519:211–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald E, Volkoff H (2009a) Cloning, distribution and effects of season and nutritional status on the expression of neuropeptide Y (NPY), cocaine and amphetamine regulated transcript (CART) and cholecystokinin (CCK) in winter flounder (Pseudopleuronectes americanus). Horm Behav 56:58–65

    CAS  PubMed  Google Scholar 

  • MacDonald E, Volkoff H (2009b) Neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) in winter skate (Raja ocellata): cDNA cloning, tissue distribution and mRNA expression responses to fasting. Gen Comp Endocrinol 161:252–261

    CAS  PubMed  Google Scholar 

  • Maekawa F, Nakamori T, Uchimura M, Fujiwara K, Yada T, Tsukahara S et al (2007) Activation of cholecystokinin neurons in the dorsal pallium of the telencephalon is indispensable for the acquisition of chick imprinting behavior. J Neurochem 102:1645–1657

    CAS  PubMed  Google Scholar 

  • Mantyh PW, Hunt SP (1984) Evidence for cholecystokinin-like immunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Res 291:49–54

    CAS  PubMed  Google Scholar 

  • McClellan AD (1992) Functional regeneration and recovery of locomotor activity in spinally transected lamprey. J Exp Zool 261:274–287

    CAS  PubMed  Google Scholar 

  • McDonald AJ, Pearson JC (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci Lett 100:53–58

    CAS  PubMed  Google Scholar 

  • Meléndez-Ferro M, Pérez-Costas E, Villar-Cheda B, Abalo XM, Rodríguez-Muñoz R, Rodicio MC, Anadón R (2002) Ontogeny of gamma-aminobutyric acid-immunoreactive neuronal populations in the forebrain and midbrain of the sea lamprey. J Comp Neurol 446:360–376

    PubMed  Google Scholar 

  • Meléndez-Ferro M, Pérez-Costas E, Villar-Cheda B, Rodríguez-Muñoz R, Anadón R, Rodicio MC (2003) Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey. J Comp Neurol 464:17–35

    PubMed  Google Scholar 

  • Mirabeau O, Joly JS (2013) Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci USA 110:E2028–E2037

    CAS  PubMed  Google Scholar 

  • Monigatti F, Gasteiger E, Bairoch A, Jung E (2002) The Sulfinator: predicting tyrosine sulfation sites in protein sequences. Bioinformatics 18:769–770

    CAS  PubMed  Google Scholar 

  • Monstein HJ, Thorup JU, Folkesson R, Johnsen AH, Rehfeld JF (1993) cDNA deduced procionin. Structure and expression in protochordates resemble that of procholecystokinin in mammals. FEBS Lett 331:60–64

    CAS  PubMed  Google Scholar 

  • Monti JM (2010) The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med Rev 14:307–317

    PubMed  Google Scholar 

  • Montpetit CJ, Chatalov V, Yuk J, Rasaratnam I, Youson JH (2005) Expression of neuropeptide Y family peptides in the brain and gut during stages of the life cycle of a parasitic lamprey (Petromyzon marinus) and a nonparasitic lamprey (Ichthyomyzon gagei). Ann N Y Acad Sci 1040:140–149

    CAS  PubMed  Google Scholar 

  • Moons L, Batten TFC, Vandesande F (1992) Comparative distribution of substance P (SP) and cholecystokinin (CCK) binding sites and immunoreactivity in the brain of the sea bass (Dicentrarchus labrax). Peptides 13:37–46

    CAS  PubMed  Google Scholar 

  • Morley JE (1982) The ascent of cholecystokinin (CCK)—from gut to brain. Life Sci 30:479–493

    CAS  PubMed  Google Scholar 

  • Murashita K, Kurokawa T, Nilsen TO, Rønnestad I (2009) Ghrelin, cholecystokinin, and peptide YY in Atlantic salmon (Salmo salar): molecular cloning and tissue expression. Gen Comp Endocrinol 160:223–235

    CAS  PubMed  Google Scholar 

  • Mutt V, Jorpes JE (1968) Structure of porcine cholecystokinin-pancreozymin. 1. Cleavage with thrombin and with trypsin. Eur J Biochem 6:156–162

    CAS  PubMed  Google Scholar 

  • Nachman RJ, Holman GM, Cook BJ, Haddon WF, Ling N (1986a) Leucosulfakinin-II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochem Biophys Res Commun 140:357–364

    CAS  PubMed  Google Scholar 

  • Nachman RJ, Holman GM, Haddon WF, Ling N (1986b) Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science 234:71–73

    CAS  PubMed  Google Scholar 

  • Negishi K, Kiyama H, Kato S, Teranishi T, Hatakenaka S, Katayama Y et al (1986) An immunohistochemical study on the river lamprey retina. Brain Res 362:389–393

    CAS  PubMed  Google Scholar 

  • Nishimura S, Bilgüvar K, Ishigame K, Sestan N, Günel M, Louvi A (2015) Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development. PLoS One 10(4):e0124295

    PubMed  PubMed Central  Google Scholar 

  • Ohta Y, Brodin L, Grillner S, Hökfelt T, Walsh JH (1988) Possible target neurons of the reticulospinal cholecystokinin (CCK) projection to the lamprey spinal cord: immunohistochemistry combined with intracellular staining with lucifer yellow. Brain Res 445:400–403

    CAS  PubMed  Google Scholar 

  • Panman L, Papathanou M, Laguna A, Oosterveen T, Volakakis N, Acampora D et al (2014) Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep 8:1018–1025

    CAS  PubMed  Google Scholar 

  • Parker D (2000) Presynaptic and interactive peptidergic modulation of reticulospinal synaptic inputs in the lamprey. J Neurophysiol 83:2497–2507

    CAS  PubMed  Google Scholar 

  • Parker D, Söderberg C, Zotova E, Shupliakov O, Langel U, Bartfai T et al (1998) Co-localized neuropeptide Y and GABA have complementary presynaptic effects on sensory synaptic transmission. Eur J Neurosci 10:2856–2870

    CAS  PubMed  Google Scholar 

  • Pérez-Fernández J, Stephenson-Jones M, Suryanarayana SM, Robertson B, Grillner S (2014) Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J Comp Neurol 522:3775–3794

    PubMed  Google Scholar 

  • Petersen TN, Brunak S, Gunnar von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    CAS  PubMed  Google Scholar 

  • Petkó M, Kovács T (1996) Distribution of cholecystokinin-8-like immunoreactivity in the frog brain and spinal cord. Acta Biol Hung 47:355–369

    PubMed  Google Scholar 

  • Peyon P, Saied H, Lin X, Peter RE (1999) Postprandial, seasonal and sexual variations in cholecystokinin gene expression in goldfish brain. Brain Res Mol Brain Res 74:190–196

    CAS  PubMed  Google Scholar 

  • Pierre J, Mahouche M, Suderevskaya EI, Repérant J, Ward R (1997) Immunocytochemical localization of dopamine and its synthetic enzymes in the central nervous system of the lamprey Lampetra fluviatilis. J Comp Neurol 380:119–135

    CAS  PubMed  Google Scholar 

  • Pombal MA, Megías M (2019) Development and functional organization of the cranial nerves in lampreys. Anat Rec (Hoboken) 302:512–539

    Google Scholar 

  • Pombal MA, Puelles L (1999) Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. J Comp Neurol 414:391–422

    CAS  PubMed  Google Scholar 

  • Pombal MA, El Manira A, Grillner S (1997) Afferents of the lamprey striatum with special reference to the dopaminergic system: a combined tracing and immunohistochemical study. J Comp Neurol 386:71–91

    CAS  PubMed  Google Scholar 

  • Pombal MA, Marín O, González A (2001) Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. J Comp Neurol 431:105–126

    CAS  PubMed  Google Scholar 

  • Pombal MA, Abalo XM, Rodicio MC, Anadón R, González A (2003) Choline acetyltransferase-immunoreactive neurons in the retina of adult and developing lampreys. Brain Res 993:154–163

    CAS  PubMed  Google Scholar 

  • Rehfeld JF (2017) Cholecystokinin—from local gut hormone to ubiquitous messenger. Front Endocrinol (Lausanne) 8:47

    Google Scholar 

  • Rink E, Wullimann MF (2002) Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Res Bull 57:385–387

    CAS  PubMed  Google Scholar 

  • Robertson B, Saitoh K, Ménard A, Grillner S (2006) Afferents of the lamprey optic tectum with special reference to the GABA input: combined tracing and immunohistochemical study. J Comp Neurol 499:106–119

    CAS  PubMed  Google Scholar 

  • Robertson B, Auclair F, Ménard A, Grillner S, Dubuc R (2007) GABA distribution in lamprey is phylogenetically conserved. J Comp Neurol 503:47–63

    CAS  PubMed  Google Scholar 

  • Rodicio MC, Pombal MA, Anadón R (1995) Early development and organization of the retinopetal system in the larval sea lamprey, Petromyzon marinus L. An HRP study. Anat Embryol (Berlin) 192:517–526

    CAS  Google Scholar 

  • Rodicio MC, Villar-Cerviño V, Barreiro-Iglesias A, Anadón R (2008) Colocalization of dopamine and GABA in spinal cord neurones in the sea lamprey. Brain Res Bull 76:45–49

    CAS  PubMed  Google Scholar 

  • Roelants K, Fry BG, Norman JA, Clynen E, Schoofs L, Bossuyt F (2010) Identical skin toxins by convergent molecular adaptation in frogs. Curr Biol 20:125–130

    CAS  PubMed  Google Scholar 

  • Rourke IJ, Rehfeld JF, Møller M, Johnsen AH (1997) Characterization of the cholecystokinin and gastrin genes from the bullfrog, Rana catesbeiana: evolutionary conservation of primary and secondary sites of gene expression. Endocrinology 138:1719–1727

    CAS  PubMed  Google Scholar 

  • Salas CA, Yopak KE, Warrington RE, Hart NS, Potter IC, Collin SP (2015) Ontogenetic shifts in brain scaling reflect behavioral changes in the life cycle of the pouched lamprey Geotria australis. Front Neurosci 9:251

    PubMed  PubMed Central  Google Scholar 

  • Satoh N, Rokhsar D, Nishikawa T (2014) Chordate evolution and the three-phylum system. Proc Biol Sci 281:20141729

    PubMed  PubMed Central  Google Scholar 

  • Schober W (1964) Vergleichend-anatomische Untersuchungen am Gehirn der larven und adulten Tiere von Lampetra fluviatilis (Linne, 1758) und Lampetra planeri (Bloch, 1784). J Hirnforsch 7:107–209

    CAS  PubMed  Google Scholar 

  • Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR (2016) Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 6:150224

    PubMed  PubMed Central  Google Scholar 

  • Senatorov VV, Trudeau VL, Hu B (1997) Expression of cholecystokinin messenger RNA in reciprocally-connected auditory thalamus and cortex in the rat. Neuroscience 79:915–921

    CAS  PubMed  Google Scholar 

  • Singec I, Knoth R, Ditter M, Hagemeyer CE, Rosenbrock H, Frotscher M, Volk B (2002) Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons. J Comp Neurol 452:139–153

    CAS  PubMed  Google Scholar 

  • Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS et al (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45:415–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Söderberg C, Pieribone VA, Dahlstrand J, Brodin L, Larhammar D (1994) Neuropeptide role of both peptide YY and neuropeptide Y in vertebrates suggested by abundant expression of their mRNAs in a cyclostome brain. J Neurosci Res 37:633–640

    PubMed  Google Scholar 

  • Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M et al (2004) GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 19:552–569

    PubMed  Google Scholar 

  • Stephenson-Jones M, Floros O, Robertson B, Grillner S (2012) Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc Natl Acad Sci USA 109:E164–E173

    CAS  PubMed  Google Scholar 

  • Suryanarayana SM, Robertson B, Wallén P, Grillner S (2017) The lamprey pallium provides a blueprint of the mammalian layered cortex. Curr Biol 27:3264–3277

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Fukushige S, Murotsu T, Matsubara K (1986) Structure of human cholecystokinin gene and its chromosomal location. Gene 50:353–360

    CAS  PubMed  Google Scholar 

  • Tohyama M, Takatsuji K (1998) Atlas of neuroactive substances and their receptors in the rat. Oxford University Press, Oxford

    Google Scholar 

  • Tornehave D, Hougaard DM, Larsson L (2000) Microwaving for double indirect immunofluorescence with primary antibodies from the same species and for staining of mouse tissues with mouse monoclonal antibodies. Histochem Cell Biol 113:19–23

    CAS  PubMed  Google Scholar 

  • van der Kooy D, Hunt SP, Steinbusch HW, Verhofstad AA (1981) Separate populations of cholecystokinin and 5-hydroxytryptamine-containing neuronal cells in the rat dorsal raphe, and their contribution to the ascending raphe projections. Neurosci Lett 26:25–30

    PubMed  Google Scholar 

  • van Dongen PA, Hökfelt T, Grillner S, Rehfeld JF, Verhofstad AJ (1985) A cholecystokinin-like peptide is present in 5-hydroxytryptamine neurons in the spinal cord of the lamprey. Acta Physiol Scand 125:557–560

    PubMed  Google Scholar 

  • Van Noorden S, Pearse AGE (1974) Immunoreactive polypeptide hormones in the pancreas and gut of the lamprey. Gen Comp Endocrinol 23:311–324

    PubMed  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, De Mey J, Gilles C (1980) Immunohistochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci USA 77:1190–1194

    CAS  PubMed  Google Scholar 

  • Vesselkin NP, Repérant J, Kenigfest NB, Miceli D, Ermakova TV, Rio JP (1984) An anatomical and electrophysiological study of the centrifugal visual system in the lamprey (Lampetra fluviatilis). Brain Res 292:41–56

    CAS  PubMed  Google Scholar 

  • Villar-Cerviño V, Abalo XM, Villar-Cheda B, Meléndez-Ferro M, Pérez-Costas E, Holstein GR et al (2006) Presence of glutamate, glycine, and gamma-aminobutyric acid in the retina of the larval sea lamprey: comparative immunohistochemical study of classical neurotransmitters in larval and postmetamorphic retinas. J Comp Neurol 499:810–827

    PubMed  Google Scholar 

  • Villar-Cerviño V, Barreiro-Iglesias A, Anadón R, Rodicio MC (2008) Distribution of glycine immunoreactivity in the brain of adult sea lamprey (Petromyzon marinus). Comparison with gamma-aminobutyric acid. J Comp Neurol 507:1441–1463 (Erratum in: J Comp Neurol 508:382384)

    PubMed  Google Scholar 

  • Villar-Cerviño V, Barreiro-Iglesias A, Anadón R, Rodicio MC (2009) Development of glycine immunoreactivity in the brain of the sea lamprey: comparison with gamma-aminobutyric acid immunoreactivity. J Comp Neurol 512:747–767

    PubMed  Google Scholar 

  • Villar-Cerviño V, Barreiro-Iglesias A, Mazan S, Rodicio MC, Anadón R (2011) Glutamatergic neuronal populations in the forebrain of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 519:1712–1735

    PubMed  Google Scholar 

  • Villar-Cerviño V, Barreiro-Iglesias A, Fernández-López B, Mazan S, Rodicio MC, Anadón R (2013) Glutamatergic neuronal populations in the brainstem of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 521:522–557

    PubMed  Google Scholar 

  • Villar-Cheda B, Abalo XM, Anadón R, Rodicio MC (2006) Calbindin and calretinin immunoreactivity in the retina of adult and larval sea lamprey. Brain Res 1068:118–130

    CAS  PubMed  Google Scholar 

  • Villar-Cheda B, Abalo XM, Villar-Cerviño V, Barreiro-Iglesias A, Anadón R, Rodicio MC (2008) Late proliferation and photoreceptor differentiation in the transforming lamprey retina. Brain Res 1201:60–67

    CAS  PubMed  Google Scholar 

  • Vitale M, Vashishtha A, Linzer E, Powell DJ, Friedman JM (1991) Molecular cloning of the mouse CCK gene: expression in different brain regions and during cortical development. Nucleic Acids Res 19:169–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt MM, Uhl GR (1988) Preprocholecystokinin mRNA in rat brain: regional expression includes thalamus. Brain Res 464:247–253

    CAS  PubMed  Google Scholar 

  • Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142:3–19

    CAS  PubMed  Google Scholar 

  • Wang Y, Zorio DAR, Karten HJ (2017) Heterogeneous organization and connectivity of the chicken auditory thalamus (Gallus gallus). J Comp Neurol 525:3044–3071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyeth MS, Zhang N, Houser CR (2012) Increased cholecystokinin labeling in the hippocampus of a mouse model of epilepsy maps to spines and glutamatergic terminals. Neuroscience 202:371–383

    CAS  PubMed  Google Scholar 

  • Xu X, Roby KD, Callaway EM (2010) Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 518:389–404

    PubMed  PubMed Central  Google Scholar 

  • Yáñez J, Anadón R (1994) Afferent and efferent connections of the habenula in the larval sea lamprey (Petromyzon marinus L.): an experimental study. J Comp Neurol 345:148–160

    PubMed  Google Scholar 

  • Yáñez J, Souto Y, Piñeiro L, Folgueira M, Anadón R (2017) Gustatory and general visceral centers and their connections in the brain of adult zebrafish: a carbocyanine dye tract-tracing study. J Comp Neurol 525:333–362

    PubMed  Google Scholar 

  • Yui R, Nagata Y, Fujita T (1988) Immunocytochemical studies on the islet and the gut of the arctic lamprey, Lampetra japonica. Arch Histol Cytol 51:109–119

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant sponsors: Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund 2007–2013 (Grant number: BFU-2017-87079-P). L.A.Y.G was supported by a PhD studentship awarded by the Mexican Council of Science and Technology (CONACyT studentship no. 418612) and Queen Mary University of London. D.R. is supported by Institute Strategic Funding Grants to The Roslin Institute (BBS/E/D/20002172, BBS/E/D/30002275 and BBS/E/D/10002070). The authors thank the staff of Ximonde Biological Station for providing the lampreys used in this study, and the Microscopy Service (University of Santiago de Compostela) and Dr. Mercedes Rivas Cascallar for confocal microscope facilities and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antón Barreiro-Iglesias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest (financial or non-financial).

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

Alignment of selected CCK precursors from chordates used for construction of the phylogenetic tree in figure 1. Conserved residues are highlighted. Conservation in more than 70% of sequences is highlighted in black, conservative substitutions are highlighted in grey. Species names and accession numbers are as follows: Hsap (Homo sapiens; P06307), Rnor (Rattus norvegicus; P01355), Sscr (Sus scrofa; P01356), Ggal (Gallus gallus; Q9PU41), Cpic (Chrysemys picta belli; XP_005278641.1, XP_005278642.1), Amis (Alligator mississippiensis; KYO43311.1), Lcha (Latimeria chalumnae; XP_006013099.1), Ipun (Ictalurus punctatus; XM_017484277.1), Amex (Astyanax mexicanus; XP_022531953.1), Drer (Danio rerio; XP_002665661.2), Saca (Squalus acanthias; CAB10585.1), Cmil (Callorhinchus milii; XP_007895078.1), Pmar (P. marinus; ADJ57604.1), Lcam (Lethenteron camtschaticum; APJL01044986.1), Cint (Ciona intestinalis; NP_001027711.1) (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobrido-Cameán, D., Yáñez-Guerra, L.A., Robledo, D. et al. Cholecystokinin in the central nervous system of the sea lamprey Petromyzon marinus: precursor identification and neuroanatomical relationships with other neuronal signalling systems. Brain Struct Funct 225, 249–284 (2020). https://doi.org/10.1007/s00429-019-01999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01999-2

Keywords

Navigation