Skip to main content
Log in

TRPM4 protein expression in prostate cancer: a novel tissue biomarker associated with risk of biochemical recurrence following radical prostatectomy

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Background

Transient receptor potential cation channel, subfamily M, member 4 (TRPM4) messenger RNA (mRNA) has been shown to be upregulated in prostate cancer (PCa) and might be a new promising tissue biomarker. We evaluated TRPM4 protein expression and correlated the expression level with biochemical recurrence (BR) following radical prostatectomy (RP).

Material and methods

The study included 614 patients who had undergone RP. TRPM4 immunohistochemical staining was performed on samples of benign tissue, tissue containing PIN glands and PCa tissue using a commercially available polyclonal antibody. Staining intensity was recorded by two independent observers using a four-tired semi-quantitative grading system (0, 1+, 2+, 3+) converted into H-scores. Interobserver agreement was calculated by linear weighted kappa statistics. The association between staining intensity and BR was analysed using the Kaplan-Meier estimator and uni- and multiple Cox proportional hazard regression models.

Results

Significantly higher staining intensity was found in PCa glands compared to benign glands (p < 0.001). The concordance rate in TRPM4 staining intensities for benign, PIN and PCa tissue ranged from 86.0 to 91.5 %, corresponding to linear weighted kappa values of 0.566–0.789. After adjusting for patient and tumour characteristics, patients with a higher staining intensity in PCa glands compared to matched benign glands and an H-score equal to or above the median had an increased risk of BR (HR 1.79–2.62; p = 0.01–0.03 for the two observers) when compared to patients with a lower staining intensity.

Conclusions

TRPM4 protein expression is widely expressed in benign and cancerous prostate tissue, with highest staining intensities found in PCa. Overexpression of TRPM4 in PCa (combination of high staining intensity and a high H-score) is associated with increased risk of BR after RP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BR-free survival:

Biochemical recurrence free survival

References

  1. Malvezzi M, Bertuccio P, Levi F, La VC, Negri E (2014) European cancer mortality predictions for the year 2014. Ann Oncol 25:1650–1656

    Article  CAS  PubMed  Google Scholar 

  2. Rider JR, Sandin F, Andren O, Wiklund P, Hugosson J, Stattin P (2013) Long-term outcomes among noncuratively treated men according to prostate cancer risk category in a nationwide, population-based study. Eur Urol 63:88–96

    Article  PubMed  Google Scholar 

  3. Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW (2008) An updated catalog of prostate cancer predictive tools. Cancer 113:3075–3099

    Article  PubMed  Google Scholar 

  4. Fraser M, Berlin A, Bristow RG, van der Kwast T. Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol Oncol 2014

  5. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    Article  CAS  PubMed  Google Scholar 

  6. Gkika D, Prevarskaya N (2011) TRP channels in prostate cancer: the good, the bad and the ugly? Asian J Androl 13:673–676

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lehen'kyi V, Prevarskaya N (2011) TRP-Channels and Human Prostate Carcinogenesis. In: Spiess PE (ed) Prostate Cancer - From Bench to Bedside. InTech, Rijeka, pp 133–142

    Google Scholar 

  8. Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen'kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N (2006) Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66:2038–2047

    Article  CAS  PubMed  Google Scholar 

  9. Vanoverberghe K, Vanden Abeele F, Mariot P, Lepage G, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, Skryma R, Prevarskaya N (2004) Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ 11:321–330

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Barritt GJ (2006) TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocr Relat Cancer 13:27–38

    Article  PubMed  Google Scholar 

  11. Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta 1772:937–946

    Article  CAS  PubMed  Google Scholar 

  12. Mathar I, Jacobs G, Kecskes M, Menigoz A, Philippaert K, Vennekens R (2014) TRPM4. In: Nilius B, Flockerzi V, editors. Transient Receptor Potential Cation Channels - Handbook of Experimental Pharmacology: Springer. p 461-487

  13. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    Article  CAS  PubMed  Google Scholar 

  14. Kristiansen G, Pilarsky C, Wissmann C, Kaiser S, Bruemmendorf T, Roepcke S, Dahl E, Hinzmann B, Specht T, Pervan J, Stephan C, Loening S, Dietel M, Rosenthal A (2005) Expression profiling of microdissected matched prostate cancer samples reveals CD166/MEMD and CD24 as new prognostic markers for patient survival. J Pathol 205:359–376

    Article  CAS  PubMed  Google Scholar 

  15. Armisen R, Marcelain K, Simon F, Tapia JC, Toro J, Quest AF, Stutzin A (2011) TRPM4 enhances cell proliferation through up-regulation of the beta-catenin signaling pathway. J Cell Physiol 226:103–109

    Article  CAS  PubMed  Google Scholar 

  16. Kristiansen G, Fritzsche FR, Wassermann K, Jager C, Tolls A, Lein M, Stephan C, Jung K, Pilarsky C, Dietel M, Moch H (2008) GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics. Br J Cancer 99:939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McClelland RA, Finlay P, Walker KJ, Nicholson D, Robertson JF, Blamey RW, Nicholson RI (1990) Automated quantitation of immunocytochemically localized estrogen receptors in human breast cancer. Cancer Res 50:3545–3550

    CAS  PubMed  Google Scholar 

  18. Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, Tsunoda T, Takata R, Kasahara K, Miki T, Fujioka T, Shuin T, Nakamura Y (2004) Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res 64:5963–5972

    Article  CAS  PubMed  Google Scholar 

  19. Liu P, Ramachandran S, Ali SM, Scharer CD, Laycock N, Dalton WB, Williams H, Karanam S, Datta MW, Jaye DL, Moreno CS (2006) Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 66:4011–4019

    Article  CAS  PubMed  Google Scholar 

  20. Singh J, Manickam P, Shmoish M, Natik S, Denyer G, Handelsman D, Gong DW, Dong Q (2006) Annotation of androgen dependence to human prostate cancer-associated genes by microarray analysis of mouse prostate. Cancer Lett 237:298–304

    Article  CAS  PubMed  Google Scholar 

  21. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2 + -activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  CAS  PubMed  Google Scholar 

  22. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2 + -activated cation channel TRPM4. J Biol Chem 278:30813–30820

    Article  CAS  PubMed  Google Scholar 

  23. Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2 + -activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    Article  CAS  PubMed  Google Scholar 

  24. Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005) The selectivity filter of the cation channel TRPM4. J Biol Chem 280:22899–22906

    Article  CAS  PubMed  Google Scholar 

  25. Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929

    Article  CAS  PubMed  Google Scholar 

  26. Simard C, Hof T, Keddache Z, Launay P, Guinamard R (2013) The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol 59:11–19

    Article  CAS  PubMed  Google Scholar 

  27. Becerra A, Echeverria C, Varela D, Sarmiento D, Armisen R, Nunez-Villena F, Montecinos M, Simon F (2011) Transient receptor potential melastatin 4 inhibition prevents lipopolysaccharide-induced endothelial cell death. Cardiovasc Res 91:677–684

    Article  CAS  PubMed  Google Scholar 

  28. Suguro M, Tagawa H, Kagami Y, Okamoto M, Ohshima K, Shiku H, Morishima Y, Nakamura S, Seto M (2006) Expression profiling analysis of the CD5+ diffuse large B-cell lymphoma subgroup: development of a CD5 signature. Cancer Sci 97:868–874

    Article  CAS  PubMed  Google Scholar 

  29. Wong NA, Pignatelli M (2002) Beta-catenin--a linchpin in colorectal carcinogenesis? Am J Pathol 160:389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  31. Fuessel S, Sickert D, Meye A, Klenk U, Schmidt U, Schmitz M, Rost AK, Weigle B, Kiessling A, Wirth MP (2003) Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. Int J Oncol 23:221–228

    CAS  PubMed  Google Scholar 

  32. Kiessling A, Fussel S, Schmitz M, Stevanovic S, Meye A, Weigle B, Klenk U, Wirth MP, Rieber EP (2003) Identification of an HLA-A*0201-restricted T-cell epitope derived from the prostate cancer-associated protein trp-p8. Prostate 56:270–279

    Article  CAS  PubMed  Google Scholar 

  33. Henshall SM, Afar DE, Hiller J, Horvath LG, Quinn DI, Rasiah KK, Gish K, Willhite D, Kench JG, Gardiner-Garden M, Stricker PD, Scher HI, Grygiel JJ, Agus DB, Mack DH, Sutherland RL (2003) Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res 63:4196–4203

    CAS  PubMed  Google Scholar 

  34. Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ, Brown EM, Hediger MA, Freeman MR (2001) CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun 282:729–734

    Article  CAS  PubMed  Google Scholar 

  35. Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H (2003) Expression of the Ca2 + -selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22:7858–7861

    Article  CAS  PubMed  Google Scholar 

  36. Antonarakis ES, Feng Z, Trock BJ, Humphreys EB, Carducci MA, Partin AW, Walsh PC, Eisenberger MA (2012) The natural history of metastatic progression in men with prostate-specific antigen recurrence after radical prostatectomy: long-term follow-up. BJU Int 109:32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tennstedt P, Koster P, Bruchmann A, Mirlacher M, Haese A, Steuber T, Sauter G, Huland H, Graefen M, Schlomm T, Minner S, Simon R (2012) The impact of the number of cores on tissue microarray studies investigating prostate cancer biomarkers. Int J Oncol 40:261–268

    PubMed  Google Scholar 

  38. Kirkegaard T, Edwards J, Tovey S, McGlynn LM, Krishna SN, Mukherjee R, Tam L, Munro AF, Dunne B, Bartlett JM (2006) Observer variation in immunohistochemical analysis of protein expression, time for a change? Histopathology 48:787–794

    Article  CAS  PubMed  Google Scholar 

  39. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The excellent technical support by Silvia Behnke (immunohistochemistry) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Kristiansen.

Ethics declarations

Financial disclosure/Conflict of Interest

None.

Additional information

Institutions at which the work was performed

Institute of Pathology, University Hospital Bonn (UKB), Bonn, Germany; Institute of Surgical Pathology, University Hospital Zurich (USZ), Zurich, Switzerland; Institute of Pathology, Charité University Hospital, Berlin, Germany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Validation of TRPM4 antibody a) TRPM4 Immunohistochemistry, demonstrating a predominantly cytoplasmic reaction in invasive epithelium. b) Negative control: After pre-incubation with a 10-molar excess of the immunogenic peptide, this immunoreactivity was significantly reduced, leaving merely a weak background staining. (JPG 231 kb)

High resolution (TIF 3964 kb)

Supplementary Figure 2

Kaplan-Meier estimated biochemical recurrence free survival curves for 576 patients with available biochemical follow-up data. a) Patients dichotomised according to observer 1’s records on TRPM4 overexpression in PCa compared to benign tissue. b) Patients dichotomised according to observer 2’s records on TRPM4 over expression in PCa compared to benign tissue. c) Patients dichotomised according to observer 1’s records on H-scores. d) Patients dichotomised according to observer 2’s records on H-scores. (JPG 48 kb)

(JPG 47 kb)

(JPG 48 kb)

(JPG 49 kb)

high resolution image (TIFF 2500 kb)

(TIFF 2500 kb)

(TIFF 2500 kb)

(TIFF 2500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, K.D., Soldini, D., Jung, M. et al. TRPM4 protein expression in prostate cancer: a novel tissue biomarker associated with risk of biochemical recurrence following radical prostatectomy. Virchows Arch 468, 345–355 (2016). https://doi.org/10.1007/s00428-015-1880-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1880-y

Keywords

Navigation