Skip to main content

Advertisement

Log in

Stem cell marker-positive stellate cells and mast cells are reduced in benign-appearing bladder tissue in patients with urothelial carcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Survival after invasive bladder cancer has improved less than that of other common non-skin cancers. In many types of malignancy, treatment failure has been attributed to therapy-resistant stem-like cancer cells. Our aim was therefore to determine identities of stem cell marker-positive cells in bladder cancer tissue and to investigate possible associations between these cells and different forms of bladder neoplasia. We investigated tissue from 52 patients with bladder neoplasia and 18 patients with benign bladder conditions, from a cohort that had been previously described with regard to diagnosis and outcome. The samples were analysed immunohistologically for the stem cell markers aldehyde dehydrogenase 1 A1 (ALDH1) and CD44, and markers of cell differentiation. The majority of stem cell marker-positive cells were located in connective tissue, and a smaller fraction in epithelial tissue. Stem cell marker-positive cells exhibiting possible stem cell characteristics included cells in deeper locations of benign and malignant epithelium, and sub-endothelial cells in patients with or without neoplasia. Stem cell marker-positive cells with non-stem cell character included stellate cells, mast cells, endothelial cells, foamy histiocytes, and neurons. Significantly, ALDH1+ stellate cells and ALDH1+ mast cells were reduced in number in stroma of benign-appearing mucosa of bladder cancer patients. The stem cell markers ALDH1 and CD44 label several types of differentiated cells in bladder tissue. ALDH1+ stellate cells and mast cells appear to be reduced in stroma of normal-appearing mucosa of bladder cancer patients, and may be part of a “field effect” in cancer-near areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Cancer in Norway 2011: Cancer incidence, mortality, survival and prevalence in Norway (2013) Cancer Registry of Norway, Institute of Population-based Cancer Research. http://kreftregisteret.no/Global/Cancer%20in%20Norway/2011/cin2011_with_special_issue-NORDCAN.pdf. Accessed 17 October 2013

  3. Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R (2003) The health economics of bladder cancer. A comprehensive review of the published literature. Pharmacoeconomics 21:1315–1330

    Article  PubMed  Google Scholar 

  4. Burnet NG, Jefferies SJ, Benson RJ, Hunt DP, Treasure FP (2005) Years of life lost (YLL) from cancer is an important measure of population burden—and should be considered when allocating research funds. Br J Cancer 92:241–245

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Young RH (2008) Non-neoplastic disorders of the urinary bladder. Histology. In: Bostwick DG, Cheng L (ed) In: Urologic Surgical Pathology, 2nd edn. Elsevier, pp 217-219

  6. Isfoss BL (2011) The sensitivity of fluorescent-light cystoscopy for the detection of carcinoma in situ (CIS) of the bladder: a meta-analysis with comments on gold standard. BJU Int 108:1703–1707

    Article  PubMed  Google Scholar 

  7. Althausen AF, Prout GR, Daly JJ (1976) Non-invasive papillary carcinoma of the bladder associated with carcinoma in situ. J Urol 116:575–580

    PubMed  CAS  Google Scholar 

  8. Soto EA, Friedell GH, Tiltman AJ (1997) Bladder cancer as seen in giant histologic sections. Cancer 39:447–455

    Article  Google Scholar 

  9. Koss LG, Nakanishi I, Freed SZ (1977) Nonpapillary carcinoma in situ and atypical hyperplasia in cancerous bladders. Further studies of surgically removed bladders by mapping. Urology 9:442–455

    Article  PubMed  CAS  Google Scholar 

  10. Isfoss BL, Majak B, Busch C, Braathen GJ (2011) Diagnosis of intraurothelial neoplasia. Interobserver variation and the value of individual histopathologic attributes. Anal Quant Cytol Histol 33:75–81

    PubMed  Google Scholar 

  11. Sylvester RJ, van der Mejden APM, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K (2006) Predicting recurrence and progression with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49:466–477

    Article  PubMed  Google Scholar 

  12. Cheng L, Cheville JC, Neumann RM, Leibovich BC, Egan KS, Spotts BE, Bostwick DG (1999) Survival of patients with carcinoma in situ of the urinary bladder. Cancer 85:2469–2479

    Article  PubMed  CAS  Google Scholar 

  13. Chade DC, Shariat SF, Godoy G, Savage CJ, Cronin AM, Bochner BH et al (2010) Clinical outcomes of primary bladder carcinoma in situ in a contemporary series. J Urol 184:74–80

    Article  PubMed  Google Scholar 

  14. Cooper PH, Waisman J, Johnston WH, Skinner DG (1973) Severe atypia of transitional epithelium and carcinoma of the urinary bladder. Cancer 31:1055–1060

    Article  PubMed  CAS  Google Scholar 

  15. Koss LG, Tiamson EM, Robbins MA (1974) Mapping cancerous and precancerous bladder changes. JAMA 227:281–286

    Article  PubMed  CAS  Google Scholar 

  16. Farrow GM, Utz DC, Rife CC (1976) Morphological and clinical observations of patients with early bladder cancer treated with total cystectomy. Cancer Res 36:2495–2501

    PubMed  CAS  Google Scholar 

  17. Farrow GM, Utz DC, Rife CC, Greene L (1977) Clinical observations on sixty-nine cases of in situ carcinoma of the urinary bladder. Cancer Res 27:2794–2798

    Google Scholar 

  18. Koss LG (1979) Mapping of the urinary bladder: its impact on the concepts of bladder cancer. Hum Pathol 10:533–548

    Article  PubMed  CAS  Google Scholar 

  19. Brawn PN (1982) The origin of invasive carcinoma of the bladder. Cancer 50:515–519

    Article  PubMed  CAS  Google Scholar 

  20. Clarke MF, Dick JE, Dirks PB, Eaves CH, Jamieson CHM, Jones DL et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  PubMed  CAS  Google Scholar 

  21. Gupta PB, Chaffer CI, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–2012

    Article  PubMed  CAS  Google Scholar 

  22. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al (2004) Characterization of clonigenic multiple myeloma cells. Blood 103:2332–2336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. OBrien CA, Pollett A, Gallinger S, Dick JE (2006) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  CAS  Google Scholar 

  24. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 15:555–567

    Article  CAS  Google Scholar 

  25. Al-Hajj WMS, Benito-Hernandez MSJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. PNAS 100:3983–3988

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Rovira M, Scott SG, Liss AS, Jensen J, Thayer SP, Leach SD (2009) Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci U S A 107:75–80

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–3389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Burger PE, Gupta R, Xiong X, Ontiveros CS, Salm SN, Moscatelli D, Wilson EL (2009) High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 27:220–2228

    Article  CAS  Google Scholar 

  29. Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z et al (2010) Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 19:327–337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Tagutchi T (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15:4234–4241

    Article  PubMed  CAS  Google Scholar 

  31. Duester G (2008) Retinoid acid synthesis and signaling during early organogenesis. Cell 134:921–931

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. The Human Protein Atlas (2013) CRABP1. The Swedish Human Protein Atlas Project. http://proteinatlas.org/ENSG00000166426. Accessed 17 Oct 2013

  33. Isfoss BL, Majak B, Busch C, Braathen GJ (2011) Diagnosis of intraurothelial neoplasia. Interobserver variation and the value of individual histopathologic attributes. Anal Quant Cytol Histol 33:75–81

    PubMed  Google Scholar 

  34. Epstein JI, Amin MB, Reuter VR, Mostofi FK (1998) The World Health Organization/International Society of Urological Pathology Consensus Classification of Urothelial (Transitional Cell) Neoplasms of the Urinary Bladder. Am J Surg Pathol 22:1435–1448

    Article  PubMed  CAS  Google Scholar 

  35. Tumours of the urinary system (2004) In: Eble JN, Sauter G, Epstein JI and Sesterhenn IA (ed) WHO Classification of Tumours. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. IARCPress, Lyon, pp 89–157

  36. van der Horst G, Bos L, van der Pluijm G (2012) Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Mol Cancer Res 10:995–1009

    Article  PubMed  CAS  Google Scholar 

  37. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  PubMed  CAS  Google Scholar 

  38. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  39. Zhou Y, Pan P, Yao L, Meng S, Ping H, Niu N et al (2010) CD117-positive cells of the heart: progenitor cells or mast cells? J Histochem Cytochem 58:309–316

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Jain PC, Singh SN, Pratap VK, Lahiri B (1977) Connective tissue changes and mast cell variations in benign and malignant lesions of the uterine cervix. Int Surg 62:358–360

    PubMed  CAS  Google Scholar 

  41. Dabiri S, Huntsman D, Makretsov N, Cheang M, Gilks B, Bajdik C et al (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favourable prognosis. Mod Pathol 17:690–695

    Article  PubMed  Google Scholar 

  42. Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brünner N, Moesgaard F (1999) Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol 189:487–495

    Article  PubMed  CAS  Google Scholar 

  43. Fleischmann A, Schlomm T, Köllermann T, Sekulic N, Huland H, Mirlacher M et al (2009) Immunological microenvironment in prostate cancer. High mast cell densities are associated with favourable tumor characteristics and good prognosis. Prostate 69:976–981

    Article  PubMed  CAS  Google Scholar 

  44. Carlini MJ, Dalurzo MC, Lastiri JM, Smith DE, Vasallo BC, Puricelli LI, Lauría de Cidre LS (2010) Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum Pathol 41:697–705

    Article  PubMed  CAS  Google Scholar 

  45. Norum KR (1984) The name of the perisinusoidal stellate cells, fat-storing cells, pericytes, vitamin A-storing cells of the liver. Kupffer Cell Bull 5:13

    Google Scholar 

  46. Wake K (1971) "Sternzellen" in the liver: Perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 132:429–461

    Article  PubMed  CAS  Google Scholar 

  47. Berkley HJ (1893) Studies in the histology of the liver. III. The perivascular cells of the rabbits liver. Anat Anz 8:787–792

    Google Scholar 

  48. Zimmerman KW (1923) Der feinere bau der blutkapillären. Z Anat 68:29–109

    Article  Google Scholar 

  49. Ito T (1951) Cytological studies on stellate cells of Kupffer and fat-storing cells in the capillary wall of the human liver. Acta Anat Nippon 26:2

    Google Scholar 

  50. Suzuki K (1958) A silver impregnation method in histology. Takeda Pharm Ind Ozaka 310–320

  51. Bronfenmajer S, Schaffer F, Popper H (1966) Fat storing cells (lipocytes) in human liver. Arch Pathol 82:447–553

    PubMed  CAS  Google Scholar 

  52. Yamada E, Hirosawa K (1976) The possible existence of a vitamin A-storing cell system. Cell Struct Funct 1:201–204

    Article  Google Scholar 

  53. Hruban Z, Russell RM, Boyer JL, Glagov S, Bagheri SA (1974) Ultrastructural changes in livers of two patients with hypervitaminosis A. Am J Pathol 76:451–468

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Nakane PK (1963) Ito’s "fat-storing cell" of the mouse liver. Anat Rec 145:265–266

    Google Scholar 

  55. Wake K (1980) Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol 66:303–353

    Article  PubMed  CAS  Google Scholar 

  56. Nordlinder H, Eriksson U, Busch C (1991) Identification of extrahepatic stellate cells and the cell specific regulation of cellular retinol binding protein. Dissertation, Uppsala University. Acta Universitatis Upsaliensis nr. 284, paper 5

  57. Nagy NE, Holven KB, Roos N, Senoo H, Kojima N, Norum KR, Blomhoff R (1997) Storage of vitamin A in extrahepatic cells in normal rats. J Lipid Res 38:645–658

    PubMed  CAS  Google Scholar 

  58. Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A (2010) Understanding the "lethal" drivers of tumor-stroma co-evolution. Emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment. Cancer Biol Ther 10:537–542

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the Telemark Hospital Research and Development Fund. We thank Linda Røland Svensson at Telemark Hospital and Ulla Larsson Petterson at Akademiska Sjukhuset Uppsala for laboratory assistance, and ImaGene-iT AB in Sweden for image processing and figure compilation.

Acknowledgment of funding and grants

R&D Fund, Telemark Hospital, 3710 Skien, Norway

Disclosure of Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn L. Isfoss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isfoss, B.L., Busch, C., Hermelin, H. et al. Stem cell marker-positive stellate cells and mast cells are reduced in benign-appearing bladder tissue in patients with urothelial carcinoma. Virchows Arch 464, 473–488 (2014). https://doi.org/10.1007/s00428-014-1561-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1561-2

Keywords

Navigation