Skip to main content

Advertisement

Log in

Ductal plates in hepatic ductular reactions. Hypothesis and implications. III. Implications for liver pathology

  • Review and Perspective
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

This article discusses on the basis of the ductal plate hypothesis the implication of the concept for several liver abnormalities. The occurrence of ductal plates (DP) during liver growth in childhood would explain the paraportal and parenchymal localizations of von Meyenburg complexes in postnatally developed parts of the liver, and their higher incidence in adulthood versus childhood. It partly clarifies the lack of postnatal intrahepatic bile duct development in Alagille syndrome and the reduced number of portal tracts in this disease. Ductular reactions (DRs) in DP configuration are the predominant type of progenitor cell reaction in fulminant necro-inflammatory liver disease, when lack of sufficient parenchymal regeneration results in liver failure. The concept of dissecting DRs explains the micronodular pattern of advanced biliary and alcoholic cirrhosis. The concept explains the DP patterns of bile ducts in several cases of biliary atresia, with implications for diagnosis and prognosis. The hypothesis also has an impact on concepts about stem/progenitor cells and their niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Desmet V (2011) Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch (in press)

  2. Desmet V (2011) Ductal plates in hepatic ductular reactions. Hypothesis and implications. II. Ontogenic liver growth in childhood. Virchows Arch (in press)

  3. Thommesen N (1978) Biliary hamartomas (von Meyenburg complexes) in liver needle biopsies. Acta Pathol Microbiol Scand 86:93–99

    CAS  Google Scholar 

  4. Ohta W, Ushio H (1984) Histological reconstruction of von Meyenburg’s complex on the liver surface. Endoscopy 16:71–74

    Article  PubMed  CAS  Google Scholar 

  5. Desmet VJ, Roskams TAD (2007) The cholangiopathies. In: Suchy FJ, Sokol RJ, Balistreri WF (eds) Liver disease in children, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 35–70

    Chapter  Google Scholar 

  6. Redston MS, Wanless IR (1996) The hepatic von Meyenburg complex: prevalence and association with hepatic and renal cysts among 2843 autopsies (corrected). Mod Pathol 9:233–237

    PubMed  CAS  Google Scholar 

  7. Desmet VJ (1992) Congenital diseases of intrahepatic bile ducts: variations on the theme "ductal plate malformation". Hepatology 16:1069–1083

    Article  PubMed  CAS  Google Scholar 

  8. Treem WR, Krzymowski GA, Cartun RW, Pedersen CA, Hyams JS, Berman (1992) Cytokeratin immunohistochemical examination of liver biopsies in infants with Alagille syndrome and biliary atresia. J Pediatr Gastroenterol Nutr 15:73–80

    Article  PubMed  CAS  Google Scholar 

  9. Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinnr NB, Piccoli DA (1999) Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829

    Article  PubMed  CAS  Google Scholar 

  10. Piccoli DA, Spinner NB (2001) Alagille syndrome and the Jagged 1 gene. Semin Liver Dis 21:525–534

    Article  PubMed  CAS  Google Scholar 

  11. Libbrecht L, Spinner NB, Moore EC, Cassiman D, Van Damme-Lombaerts R, Roskams T (2005) Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation. Am J Surg Pathol 29:820–826

    Article  PubMed  Google Scholar 

  12. Aburano T, Yokoyama K, Takayama T, Tonami N, Hisada K (1989) Distinct hepatic retention of Tc-99m IDA in arteriohepatic dysplasia (Alagille syndrome). Clin Nucl Med 14:874–876

    Article  PubMed  CAS  Google Scholar 

  13. Jinguji M, Tsuchimochi S, Nakajo M, Hamada H, Kamiyama T, Umanodan T, Tani A, Nakabeppu Y, Kaji T, Takamatsu H, Haga H (2003) Scintigraphic progress of the liver in a patient with Alagille syndrome (arteriohepatic dysplasia). Ann Nucl Med 17:693–697

    Article  PubMed  Google Scholar 

  14. Ernst LM, Spinner NB, Piccoli DA, Mauger J, Russo P (2007) Interlobular bile duct loss in pediatric cholestatic disease is associated with aberrant cytokeratin 7 expression by hepatocytes. Pediatr Dev Pathol 10:383–390

    Article  PubMed  Google Scholar 

  15. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647

    Article  PubMed  CAS  Google Scholar 

  16. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173

    Article  PubMed  CAS  Google Scholar 

  17. Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T (2004) The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127:1775–1786

    Article  PubMed  CAS  Google Scholar 

  18. Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, Stanger BZ (2009) Notch signaling controls liver development by regulating biliary differentiation. Development 136:1727–1739

    Article  PubMed  CAS  Google Scholar 

  19. Flynn DM, Nijjar S, Hubscher SG, de Goyet Jde V, Kelly DA, Strain AJ, Crosby HA (2004) The role of Notch receptor expression in bile duct development and disease. J Pathol 204:55–64

    Article  PubMed  CAS  Google Scholar 

  20. McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082

    PubMed  CAS  Google Scholar 

  21. Loomes KM, Taichman DB, Glover CL, Williams PT, Markowitz JE, Piccoli DA, Baldwin HS, Oakey RJ (2002) Characterization of Notch receptor expression in the developing mammalian heart and liver. Am J Med Genet 112:181–189

    Article  PubMed  Google Scholar 

  22. Croquelois A, Blindenbacher A, Terracciano L, Wang X, Langer I, Radtke F, Heim MH (2005) Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice. Hepatology 41:487–496

    Article  PubMed  CAS  Google Scholar 

  23. Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT (2008) Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 48:607–616

    Article  PubMed  CAS  Google Scholar 

  24. Sparks EE, Huppert KA, Brown MA, Washington MK, Huppert SS (2010) Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology 51:1391–1400

    PubMed  CAS  Google Scholar 

  25. Tchorz JS, Kinter J, Müller M, Tornillo L, Heim MH, Bettler B (2009) Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 50:871–879

    Article  PubMed  CAS  Google Scholar 

  26. Fabris L, Cadamuro M, Guido M, Spirli C, Fiorotto R, Colledan M, Torre G, Alberti D, Sonzogni A, Okolicsanyi L, Strazzabosco M (2007) Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am J Pathol 171:641–653

    Article  PubMed  CAS  Google Scholar 

  27. Collardeau-Frachon S, Scoazec JY (2008) Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken) 291:614–627, Review

    Google Scholar 

  28. Johnson FP (1919) The development of the lobule of the pig’s liver. Am J Anat 25:299–331

    Article  Google Scholar 

  29. Kamath BM, Spinner NB, Piccoli DA (2007) Alagille syndrome. In: Suchy FJ, Sokol RJ, Balistreri WF (eds) Liver disease in children, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 326–345

    Chapter  Google Scholar 

  30. Hadchouel M, Hugon RN, Gautier M (1978) Reduced ratio of portal tracts to paucity of intrahepatic bile ducts. Arch Pathol Lab Med 102:402–403

    PubMed  CAS  Google Scholar 

  31. Hashida Y, Yunis EJ (1988) Syndromatic paucity of interlobular bile ducts: hepatic histopathology of the early and endstage liver. Pediatr Pathol 8:1–15

    Article  PubMed  CAS  Google Scholar 

  32. Yuan ZR, Kobayashi N, Kohsaka T (2006) Human Jagged 1 mutants cause liver defect in Alagille syndrome by overexpression of hepatocyte growth factor. J Mol Biol 356:559–569

    Article  PubMed  CAS  Google Scholar 

  33. Low Y, Vijayan V, Tan CE (2001) The prognostic value of ductal plate malformation and other histologic parameters in biliary atresia: an immunohistochemical study. J Pediatr 139:320–322

    Article  PubMed  CAS  Google Scholar 

  34. Roy P, Chatterjee U, Ganguli M, Banerjee S, Chatterjee SK, Basu AK (2010) A histopathological study of liver and biliary remnants with clinical outcome in cases of extrahepatic biliary atresia. Indian J Pathol Microbiol 53:101–105

    Article  PubMed  Google Scholar 

  35. Pacheco MC, Campbell KM, Bove KE (2009) Ductal plate malformation-like arrays in early explants after a Kasai procedure are independent of splenic malformation complex (heterotaxy). Pediatr Dev Pathol 12:355–360

    Article  PubMed  Google Scholar 

  36. Yeh H-Z, Schteingart CD, Hagey LR, Ton-Nu H-T, Bolder U, Gavrilkina MA, Steinbach JH, Hofmann AF (1997) Effect of side chain length on biotransformation, hepatic transport, and choleretic properties of chenodeoxycholyl homologues in the rodent: studies with Dinor- (C22), Nor- (C23) and Chenodeoxycholic acid (C24). Hepatology 26:374–385

    Article  PubMed  CAS  Google Scholar 

  37. Santos JL, Kieling CO, Meurer L, Vieira S, Ferreira CT, Lorentz A, Silveira TR (2009) The extent of biliary proliferation in liver biopsies from patients with biliary atresia at portoenterostomy is associated with the postoperative prognosis. J Pediatr Surg 44:695–701

    Article  PubMed  Google Scholar 

  38. Tan CE, Chan VS, Yong RY, Vijayan V, Tan WL, Fook Chong SM, Ho JM, Cheng HH (1995) Distortion in TGF beta 1 peptide immunolocalization in biliary atresia: comparison with the normal pattern in the developing human intrahepatic bile duct system. Pathol Int 45:815–824

    Article  PubMed  CAS  Google Scholar 

  39. Sasaki H, Nio M, Iwami D, Funaki N, Ohi R, Sasano H (2001) Cytokeratin subtypes in biliary atresia: immunohistochemical study. Pathol Int 51:511–518

    Article  PubMed  CAS  Google Scholar 

  40. Libbrecht L, Cassiman D, Desmet V, Roskams T (2001) Expression of neural cell adhesion molecule in human liver development and in congenital and acquired liver diseases. Histochem Cell Biol 116:233–239

    PubMed  CAS  Google Scholar 

  41. Fabris L, Strazzabosco M, Crosby HA, Ballardini G, Hubscher SG, Kelly DA, Neuberger JM, Strain AJ, Joplin R (2000) Characterization and isolation of ductular cells coexpressing neural cell adhesion molecule and Bcl-2 from primary cholangiopathies and ductal plate malformations. Am J Pathol 156:1599–1612

    Article  PubMed  CAS  Google Scholar 

  42. Sasaki H, Nio M, Iwami D, Funaki N, Sano N, Ohi R, Sasano H (2001) E-cadherin, alpha-catenin and beta-catenin in biliary atresia: correlation with apoptosis and cell cycle. Pathol Int 51:923–932

    Article  PubMed  CAS  Google Scholar 

  43. Sergi C, Kahl P, Otto HF (2000) Contribution of apoptosis and apoptosis-related proteins to the malformation of the primitive intrahepatic biliary system in Meckel syndrome. Am J Pathol 156:1589–1598

    Article  PubMed  CAS  Google Scholar 

  44. Pohl JF, Melin-Aldana H, Sabla G, Degen JL, Bezerra JA (2001) Plaminogen deficiency leads to impaired lobular reorganization and matrix accumulation after chronic liver injury. Am J Pathol 158:921–929

    Article  Google Scholar 

  45. Baroni GS, Pastorelli A, Manzin A, Benedetti A, Marucci L, Solforosi L, Di Sario A, Brunelli E, Orlandi F, Clementi M, Macarri G (1999) Hepatic stellate cell activation and liver fibrosis are associated with necroinflammatory injury and Th1-like response in chronic hepatitis C. Liver 19(3):212–219

    Article  PubMed  CAS  Google Scholar 

  46. Sato M, Suzuki S, Senoo H (2003) Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct 28:105–112, Review

    Article  PubMed  CAS  Google Scholar 

  47. Katoonizadeh A, Nevens F, Verslype C, Pirenne J, Roskams T (2006) Liver regeneration in acute severe liver impairment: a clinicopathological correlation study. Liver Int 26:1225–1233

    Article  PubMed  Google Scholar 

  48. Yokoyama Y, Nagino M, Nimura Y (2007) Mechanism of impaired hepatic regeneration in cholestatic liver. J Hepatobiliary Pancreat Surg 14:159–166

    Article  PubMed  Google Scholar 

  49. Rosmorduc O, Housset C (2010) Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin Liver Dis 30:258–270

    Article  PubMed  CAS  Google Scholar 

  50. Siegmund SV, Dooley S, Brenner DA (2005) Molecular mechanisms of alcohol-induced hepatic fibrosis. Dig Dis 23:264–274, Review

    Article  PubMed  Google Scholar 

  51. Fischer HP, Lankes G (1991) Morphologic correlation between liver epithelium and mesenchyme allows insight into histogenesis of focal nodular hyperplasia (FNH) of the liver. Virchows Arch B Cell Pathol Incl Mol Pathol 60:373–380

    Article  PubMed  CAS  Google Scholar 

  52. Xia X, Francis H, Glaser S, Alpini G, LeSage G (2006) Bile acid interactions with cholangiocytes. World J Gastroenterol 12:3553–3563

    PubMed  CAS  Google Scholar 

  53. Desmet VJ (1992) Modulation of the liver in cholestasis. J Gastroenterol Hepatol 7:313–323

    Article  PubMed  CAS  Google Scholar 

  54. De Vos R, De Wolf-Peeters C, Desmet V, Bianchi L, Rohr HP (1975) Significance of liver canalicular changes after experimental bile duct ligation. Exp Mol Pathol 23(1):12–34

    Article  PubMed  Google Scholar 

  55. Zollner G, Fickert P, Silbert D et al (2003) Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 38:717–727

    Article  PubMed  CAS  Google Scholar 

  56. Schaap FG, van der Gaag NA, Gouma DJ, Jansen PL (2009) High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 49:1228–1235

    Article  PubMed  CAS  Google Scholar 

  57. Soroka CJ, Ballatori N, Boyer JL (2010) Organic solute transporter, OSTalpha-OSTbeta: its role in bile acid transport and cholestasis. Semin Liver Dis 30(2):178–185

    Article  PubMed  CAS  Google Scholar 

  58. Bhathal PS, Gall JAM (1985) Deletion of hyperplastic biliary epithelial cells by apoptosis following removal of the proliferative stimulus. Liver 5:311–325

    PubMed  CAS  Google Scholar 

  59. Stähelin BJ, Marti U, Zimmermann H, Reichen J (1999) The interaction of Bcl-2 and Bax regulates apoptosis in biliary epithelial cells of rats with obstructive jaundice. Virchows Arch 434:333–339

    Article  PubMed  Google Scholar 

  60. Abdel-Aziz G, Lebeau G, Rescan PY, Clément B, Rissel M, Deugnier Y, Campion JP, Guillouzo A (1990) Reversibility of hepatic fibrosis in experimentally induced cholestasis in rat. Am J Pathol 137:1333–1342

    PubMed  CAS  Google Scholar 

  61. Cameron R (1960) Reversibility and "poise" in liver disease. Arch De Vecchi Anat Patol 31:29–38

    PubMed  CAS  Google Scholar 

  62. Saxena R, Theise N (2004) Canals of Hering: recent insights and current knowledge. Semin Liver Dis 24(1):43–48, Review

    Article  PubMed  Google Scholar 

  63. Shah K, Gerber MA (1989) Development of intrahepatic bile ducts in humans. Immunohistochemical study using monoclonal cytokeratin antibodies. Arch Pathol Lab Med 113:1135–1138

    PubMed  CAS  Google Scholar 

  64. Shah KD, Gerber MA (1990) Development of intrahepatic bile ducts in humans. Possible role of laminin. Arch Pathol Lab Med 114:597–600

    PubMed  CAS  Google Scholar 

  65. Fellous TG, Islam S, Tadrous PJ, Elia G, Kocher HM, Bhattacharya S, Mears L, Turnbull DM, Taylor RW, Greaves LC, Chinnery PF, Taylor G, McDonald SA, Wright NA, Alison MR (2009) Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology 49(5):1655–1663

    Article  PubMed  CAS  Google Scholar 

  66. De Alwis N, Hudson G, Burt AD, Day CP, Chinnery PF (2009) Human liver stem cells originate from the canals of Hering. Hepatology 50(3):992–993

    Article  PubMed  Google Scholar 

  67. Zajicek G, Oren R, Weinreb M Jr (1985) The streaming liver. Liver 5(6):293–300

    PubMed  CAS  Google Scholar 

  68. Kindler V (2005) Postnatal stem cell survival: does the niche, a rare harbor where to resist the ebb tide of differentiation, also provide lineage-specific instructions? J Leukoc Biol 78:836–844

    Article  PubMed  CAS  Google Scholar 

  69. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5:873–878

    Article  PubMed  CAS  Google Scholar 

  70. Zipori D (2005) The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells 23:719–726

    Article  PubMed  CAS  Google Scholar 

  71. Desmet VJ (2009) The amazing universe of hepatic microstructure. Hepatology 50:333–344

    Article  PubMed  Google Scholar 

  72. Yang L, Jung Y, Omenetti A, Witek RP, Choi S, Vandongen HM, Huang J, Alpini GD, Diehl AM (2008) Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 26:2104–2113

    Article  PubMed  CAS  Google Scholar 

  73. Kordes C, Sawitza I, Müller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, Häussinger D (2007) CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 352:410–417

    Article  PubMed  CAS  Google Scholar 

  74. Choi SS, Omenetti A, Witek RP, Moylan CA, Syn WK, Jung Y, Yang L, Sudan DL, Sicklick JK, Michelotti GA, Rojkind M, Diehl AM (2009) Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol 297:G1093–G1106

    Article  PubMed  CAS  Google Scholar 

  75. Rygiel KA, Robertson H, Marshall HL, Pekalski M, Zhao L, Booth TA, Jones DE, Burt AD, Kirby JA (2008) Epithelial–mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab Invest 88:112–123

    Article  PubMed  CAS  Google Scholar 

  76. Zhang L, Theise N, Chua M, Reid LM (2008) The stem cell niche of human livers: symmetry between development and regeneration. Hepatology 48:1598–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Tania Roskams for helpful discussions and for providing the opportunity to keep in touch with progress in hepatopathology after my official retirement in 1996. Rita DeVos deserves my gratitude for help with illustrations.

Conflict of interest statement

I declare that I have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeer J. Desmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desmet, V.J. Ductal plates in hepatic ductular reactions. Hypothesis and implications. III. Implications for liver pathology. Virchows Arch 458, 271–279 (2011). https://doi.org/10.1007/s00428-011-1050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-011-1050-9

Keywords

Navigation