Skip to main content

Advertisement

Log in

Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Heterobasidion annosum is widely known as a major root and butt rot pathogen of conifer trees, but little information is available on its interaction with the roots of herbaceous angiosperm plants. We investigated the infection biology of H. annosum during challenge with the angiosperm model Arabidopsis and monitored the host response after exposure to different hormone elicitors, chemicals (chitin, glucan and chitosan) and fungal species that represent diverse basidiomycete life strategies [e.g., pathogen (H. annosum), saprotroph (Stereum sanguinolentum) and mutualist (Lactarius rufus)]. The results revealed that the tree pathogen (H. annosum) and the saprotroph (S. sanguinolentum) could infect the Col-8 (Columbia) ecotype of Arabidopsis in laboratory inoculation experiments. Germinated H. annosum spores had appressorium-like penetration structures attached to the surface of the Arabidopsis roots. Subsequent invasive fungal growth led to the disintegration of the vascular region of the root tissues. Progression of root rot symptoms in Arabidopsis was similar to the infection development that was previously documented in Scots pine seedlings. Scots pine PsDef1 and Arabidopsis DEFLs (AT5G44973.1) and PDF1.2 were induced at the initial stage of the infection. However, differences in the expression patterns of the defensin gene homologs from the two plant groups were observed under various conditions, suggesting functional differences in their regulation. The potential use of the H. annosum–Arabidopsis pathosystem as a model for studying forest tree diseases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic-acid

AMP:

Antimicrobial protein

DEFLs :

Defensin-like sequences

MeJA:

Methyl jasmonate

PR:

Pathogenesis related

PsDef1 :

Pinus sylvestris defensin 1

qRT-PCR:

Real-time quantitative reverse transcription PCR

SA:

Salicylic acid

References

  • Adomas A, Asiegbu FO (2006) Analysis of organ-specific responses of Pinus sylvestris to shoot (Gremmeniella abietina) and root (Heterobasidion annosum) pathogens. Physiol Mol Plant Pathol 69:140–152

    Article  CAS  Google Scholar 

  • An C, Mou Z (2012) Non-host defence response in a novel ArabidopsisXanthomonas citri subsp. citri pathosystem. PLoS One 7:e31130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Asiegbu FO, Choi W, Li G, Nahalkova J, Dean RA (2003) Isolation of a novel antimicrobial peptide gene (Sp-AMP) homologue from Pinus sylvestris (Scots pine) following infection with the root rot fungus Heterobasidion annosum. FEMS Microbiol Lett 228:27–31

    Article  CAS  PubMed  Google Scholar 

  • Asiegbu FO, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol 6:395–409

    Article  PubMed  Google Scholar 

  • Azinheira HG, Silva MD, Talhinhas P, Medeira C, Maia I, Petitot AS, Fernandez D (2010) Non-host resistance responses of Arabidopsis thaliana to the coffee leaf rust fungus (Hemileia vastatrix). Botany 88:621–629

    Article  Google Scholar 

  • Benhamou N, Theriault G (1992) Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen, Fusarium oxysporum f. sp. radicis-lycopersici. Physiol Mol Plant Pathol 41:33–52

    Article  CAS  Google Scholar 

  • Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet 29:233–240

    Article  CAS  PubMed  Google Scholar 

  • Broekaert W, Cammue BP, De Bolle MF, Thevissen K, Samblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323

    Article  CAS  Google Scholar 

  • Broekaert WF, Delaure SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host–pathogen interactions. Annu Rev Phytopathol 44:393–416

    Article  CAS  PubMed  Google Scholar 

  • Cappellaro C, Mrsa V, Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180:5030–5037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carvalho AO, Gomes VM (2009) Plant defensins—prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020

    Article  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legué V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  CAS  PubMed  Google Scholar 

  • Fossdal CG, Nagy NE, Sharma P, Lonneborg A (2003) The putative gymnosperm plant defensin polypeptide (SPI1) accumulates after seed germination is not readily released and the SPI1 levels are reduced in Pythium dimorphum-infected spruce roots. Plant Mol Biol 52:291–302

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gronberg H, Hietala AM, Haahtela K (2009) Analysing scots pine defence-related transcripts and fungal DNA levels in seedlings single- or dual-inoculated with endophytic and pathogenic Rhizoctonia species. For Pathol 39:377–389

    Article  Google Scholar 

  • Hantula J, Vainio E (2003) Specific primers for the differentiation of Heterobasidion annosum (s.str.) and H. parviporum infected stumps in northern Europe. Silva Fenn 37:181–187

    Google Scholar 

  • Hashimoto JG, Beadles-Bohling AS, Wiren KM (2004) Comparison of RiboGreen and 18S rRNA quantitation for normalizing real-time RT-PCR expression analysis. Biotechniques 36:54–60

    CAS  PubMed  Google Scholar 

  • Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J (2006) Ethylene in induced conifer defence: cDNA cloning, protein expression, and cellular and sub cellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224:865–877

    Article  CAS  PubMed  Google Scholar 

  • Huitema E, Vleeshouwers VGAA, Francis DM, Kamoun S (2003) Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Mol Plant Pathol 4:487–500

    Article  CAS  PubMed  Google Scholar 

  • Iida K, Kawaguchi S, Kobayashi N, Yoshida Y, Ishii M, Harada E et al (2011) ARTADE2DB: improved statistical inferences for Arabidopsis gene functions and structure predictions by dynamic structure-based dynamic expression (DSDE) analyses. Plant Cell Physiol 52:254–264

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovaleva V, Kiyamova R, Cramer R, Krynytskyy H, Gout I, Filonenko V, Gout R (2009) Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings. Peptides 30:2136–2143

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva V, Krynytskyy H, Gout I, Gout R (2011) Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1. Appl Microbiol Biotechnol 89(1093):1101

    Google Scholar 

  • Lawrence CB, Mitchell TK, Craven KD, Cho Y, Cramer RA, Kim KH (2008) At death’s door: alternaria pathogenicity mechanisms. Plant Pathol J 24:101–111

    Article  CAS  Google Scholar 

  • Li GS, Asiegbu FO (2004) Use of Scots pine seedling roots as an experimental model to investigate gene expression during interaction with the conifer pathogen Heterobasidion annosum (P-type). J Plant Res 117:155–162

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472

    Article  CAS  PubMed  Google Scholar 

  • Loehrer M, Langenbach C, Goellner K, Conrath U, Schaffrath U (2008) Characterization of nonhost resistance of Arabidopsis to the Asian soybean rust. Mol Plant Microbe Interact 21:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  CAS  PubMed  Google Scholar 

  • Mellersh DG, Heath MC (2003) An investigation into the involvement of defence signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol Plant Microbe Interact 16:398–404

    Article  CAS  PubMed  Google Scholar 

  • Nandi A, Kachroo P, Fukushige H, Hildebrand DF, Klessig DF, Shah J (2003) Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defence genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Mol Plant Microbe Interact 16:588–599

    Article  CAS  PubMed  Google Scholar 

  • O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerre-Tugaye M-T, Dumas B (2004) A novel ArabidopsisColletotrichum pathosystem for the molecular dissection of plant–fungal interactions. Mol Plant Microbe Interact 17:272–282

    Article  PubMed  Google Scholar 

  • Ospina-Giraldo MD, Mullins E, Kang S (2003) Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet 44:49–57

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Jin J, Lee YL, Kang S, Lee YH (2009) Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis thaliana via a mechanism distinct from that required for the infection of rice. Plant Physiol 149:474–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Penninckx IA, Thomma BPHJ, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pervieux I, Bourassa M, Laurans F, Hamelin RC, Seguin A (2004) A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiol Mol Plant Pathol 64:331–341

    Article  CAS  Google Scholar 

  • Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska-Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63:115–127

    CAS  PubMed  Google Scholar 

  • Santos B, Duran A, Valdivieso MH (1997) CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae. Mol Cell Biol 17:2485–2496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Segura A, Moreno M, Molina A, Garcia-Olmedo F (1998) Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett 435:159–162

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Lonneborg A (1996) Isolation and characterization of a cDNA encoding a plant defensin-like protein from roots of Norway spruce. Plant Mol Biol 31:707–712

    Article  CAS  PubMed  Google Scholar 

  • Silverstein KAT, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138:600–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sooriyaarachchi S, Jaber E, Covarrubias AS, Ubhayasekera W, Asiegbu FO, Mowbray SL (2011) Expression and β-glucan binding properties of Scots pine (Pinus sylvestris L.) antimicrobial protein (Sp-AMP). Plant Mol Biol 77:33–45

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stenlid J (1985) Population structure of Heterobasidion annosum as determined by somatic incompatibility, sexual incompatibility, and isoenzyme patterns. Can J Bot 63:2268–2273

    Article  CAS  Google Scholar 

  • Terras FR, Penninckx IA, Goderis IJ, Broekaert WF (1998) Evidence that the role of plant defensins in radish defence responses is independent of salicylic acid. Planta 206:117–124

    Article  CAS  PubMed  Google Scholar 

  • Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the Angiosperm flower. Ann Bot 100:603–619

    Article  PubMed  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (2000) Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13:54–61

    Article  CAS  PubMed  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Baarlen P, Woltering EJ, Staats M, van Kan JAL (2007) Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol Plant Pathol 8:41–54

    Article  Google Scholar 

  • Van de Mortel J, Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland P, van Ver Loren Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Ooij C (2011) Symbiosis: establishing the roots of a relationship. Nat Rev Micro 9:629

    Article  Google Scholar 

  • Vasiliauskas R, Stenlid J (1998) Influence of spatial scale on population structure of Stereum sanguinolentum in Northern Europe. Mycol Res 102:93–98

    Article  Google Scholar 

  • Vasiliauskas R, Menkis A, Finlay RD, Stenlid J (2007) Wood-decay fungi in fine living roots of conifer seedlings. New Phytol 174:441–446

    Article  CAS  PubMed  Google Scholar 

  • Walter C, Grace L, Donaldson SS, Moody J, Gemmel JE, van der Maos S, Kvaalen H, Lonneborg A (1999) An efficient biolistic transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants. Can J For Res 29:1539–1546

    Article  Google Scholar 

  • Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J (2006) Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica a bark beetle-associated fungus. Tree Physiol 26:977–988

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Ramonell K, Somerville S, Stacey G (2002) Characterization of early chitin-induced gene expression in Arabidopsis. Mol Plant Microbe Interact 15:963–970

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Academy of Finland (AKA), Helsinki University Research Fund and the Finnish Doctoral Program in Plant Science (FDPPS). We also thank Dr. Hannu Rita for assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Jaber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 450 kb)

Supplementary material 2 (DOCX 89 kb)

Supplementary material 3 (DOCX 15 kb)

Supplementary material 4 (DOCX 1477 kb)

Electronic supplementary material. Supplementary material S1. Supplementary material S2. Supplementary material S3. Supplementary material S4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaber, E., Xiao, C. & Asiegbu, F.O. Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems. Planta 239, 717–733 (2014). https://doi.org/10.1007/s00425-013-2012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-2012-z

Keywords

Navigation