Skip to main content
Log in

Agonist and antagonist muscle activation in elite athletes: influence of age

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Age-related neuromuscular control adaptations have been investigated mainly in untrained populations, where higher antagonist activation in adults was observed with respect to children. In elite athletes age-related differences in neuromuscular control have scarcely been investigated. Therefore, this study aims at investigating differences in co-activation about the knee joint in two groups of karate athletes belonging to the Junior (JK) and Senior (SK) age categories, performing the roundhouse kick (RK).

Methods

Six SK and six JK performed the RK impacting on a punching bag. Each participant performed three attempts during which kicking limb kinematics and sEMG from the vastus lateralis (VL) and from the biceps femoris (BF) were recorded. Co-activation index during knee flexion and extension (CIF; CIE) and agonist and antagonist activation areas of VL and BF (I AGO-VL; I AGO-BF; I ANT-VL; I ANT-BF) were computed. Hip and knee range of motion, peak angular velocity and minima and maxima of lower limb angular momentum were computed.

Results

During knee extension, the SK demonstrated higher CIE, higher IANT-BF and higher total angular momentum with respect to the JK. Significant relationships were observed between I ANT-BF and total angular momentum maxima, and between I ANT-BF and age.

Conclusions

IANT-BF is partially related to the age of the group and to joint protection upon impact. Moreover, given the very brief duration of the task, a feed-forward mechanism modulating antagonist activation partly based on the stress imposed on the knee joint could be hypothesized. This mechanism potentially involves skill dependent re-modelling of the peripheral and central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A/D:

Analogic to digital

LED:

Light emitting diode

MFCV:

Muscle fibre conduction velocity

RK:

Roundhouse kick

RM-ANOVA:

Repeated measure analysis of variance

sEMG:

Surface electromyography

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Bojsen-Moller F, Dyhre-Poulsen P (2000) Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 10(2):58–67

    Article  CAS  PubMed  Google Scholar 

  • Assaiante C, Mallau S, Viel S, Jover M, Schmitz C (2005) Development of postural control in healthy children: a functional approach. Neural Plast 12(2–3):109–118 discussion 263–172

    Article  PubMed Central  PubMed  Google Scholar 

  • Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D’Ambrosia R (1988) Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16(2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Basmajian JV (1977) Motor learning and control: a working hypothesis. Arch Phys Med Rehabil 58(1):38–41

    CAS  PubMed  Google Scholar 

  • Baum BS, Li L (2003) Lower extremity muscle activities during cycling are influenced by load and frequency. J Electromyogr Kinesiol 13(2):181–190

    Article  PubMed  Google Scholar 

  • Bautmans I, Vantieghem S, Gorus E, Grazzini YR, Fierens Y, Pool-Goudzwaard A, Mets T (2011) Age-related differences in pre-movement antagonist muscle co-activation and reaction-time performance. Exp Gerontol 46(8):637–642

    PubMed  Google Scholar 

  • Bazzucchi I, Felici F, Macaluso A, De Vito G (2004) Differences between young and older women in maximal force, force fluctuations, and surface EMG during isometric knee extension and elbow flexion. Muscle Nerve 30(5):626–635

    Article  PubMed  Google Scholar 

  • Bazzucchi I, Sbriccoli P, Marzattinocci G, Felici F (2006) Coactivation of the elbow antagonist muscles is not affected by the speed of movement in isokinetic exercise. Muscle Nerve 33(2):191–199

    Article  PubMed  Google Scholar 

  • Camomilla V, Cereatti A, Vannozzi G, Cappozzo A (2006) An optimized protocol for hip joint centre determination using the functional method. J Biomech 39(6):1096–1106

    Article  PubMed  Google Scholar 

  • Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10(4):171–178

    Article  Google Scholar 

  • Croce RV, Russel PJ, Schwartz EE, Decoster LC (2004) Knee muscular response strategies differ by developmental level but not gender during jump landing. Electromyogr Clin Neurophysiol 44(6):339–348

    CAS  PubMed  Google Scholar 

  • de Leva P (1996) Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech 29:1223–1230

    Article  PubMed  Google Scholar 

  • Del Vecchio FB, Franchini E, Del Vecchio AHM, Pieter W (2011) Energy absorbed by electronic body protector in a tae kwon do competition. Biol Sport 28:75–78

    Article  Google Scholar 

  • Duchateau J, Enoka RM (2008) Neural control of shortening and lengthening contractions: influence of task constraints. J Physiol 586(Pt 24):5853–5864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Estevan I, Alvarez O, Falco C, Molina-Garcia J, Castillo I (2011) Impact force and time analysis influenced by execution distance in a roundhouse kick to the head in taekwondo. J Strength Cond Res 25(10):2851–2856

    Article  PubMed  Google Scholar 

  • Falco C, Alvarez O, Castillo I, Estevan I, Martos J, Mugarra F, Iradi A (2009) Influence of the distance in a roundhouse kick’s execution time and impact force in Taekwondo. J Biomech 42(3):242–248

    Article  PubMed  Google Scholar 

  • Farina D (2006) Interpretation of the surface electromyogram in dynamic contractions. Exerc Sport Sci Rev 34(3):121–127

    Article  PubMed  Google Scholar 

  • Farina D, Ferguson RA, Macaluso A, De Vito G (2007) Correlation of average muscle fiber conduction velocity measured during cycling exercise with myosin heavy chain composition, lactate threshold, and VO2max. J Electromyogr Kinesiol 17(4):393–400

    Article  PubMed  Google Scholar 

  • Franz JR, Kram R (2012) How does age affect leg muscle activity/coactivity during uphill and downhill walking? Gait Posture. 10.1016/j.gaitpost.2012.08.004

  • Frost G, Dowling J, Dyson K, Bar-Or O (1997) Cocontraction in three age groups of children during treadmill locomotion. J Electromyogr Kinesiol 7(3):179–186

    Article  CAS  PubMed  Google Scholar 

  • Gamage SS, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35(1):87–93

    Article  PubMed  Google Scholar 

  • Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

    Article  CAS  PubMed  Google Scholar 

  • Halvorsen K (2003) Bias compensated least squares estimate of the center of rotation. J Biomech 36(7):999–1008

    Article  PubMed  Google Scholar 

  • Hamstra-Wright KL, Swanik CB, Sitler MR, Swanik KA, Ferber R, Ridenour M, Huxel KC (2006) Gender comparisons of dynamic restraint and motor skill in children. Clin J Sport Med 16(1):56–62

    Article  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi T, Devita P (2006) Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exerc Sport Sci Rev 34(1):29–35

    Article  PubMed  Google Scholar 

  • Kellis E, Unnithan VB (1999) Co-activation of vastus lateralis and biceps femoris muscles in pubertal children and adults. Eur J Appl Physiol Occup Physiol 79(6):504–511

    Article  CAS  PubMed  Google Scholar 

  • Kellis E, Arabatzi F, Papadopoulos C (2003) Muscle co-activation around the knee in drop jumping using the co-contraction index. J Electromyogr Kinesiol 13(3):229–238

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Kwon MS, Yenuga SS, Kwon YH (2010) The effect of target distance on pivot hip, trunk pelvis and kicking leg in tae kwon do roundhouse kick. Sport Biomech 9(2):98–114

    Article  Google Scholar 

  • Kim YK, Kim JH, Im SJ (2011) Inter-joint coordination in producing kicking velocity of Tae kwon do kicks. J Sport Sci Med 10:31–38

    Google Scholar 

  • Koropanovski N, Dopsaj M, Jovanovic S (2008) Characteristic of pointing actions of top male competitors in karate at world and European level. Braz J Biomotr 2:241–251

    Google Scholar 

  • Lazaridis S, Bassa E, Patikas D, Giakas G, Gollhofer A, Kotzamanidis C (2010) Neuromuscular differences between prepubescents boys and adult men during drop jump. Eur J Appl Physiol 110(1):67–74

    Article  PubMed  Google Scholar 

  • Macaluso A, Nimmo MA, Foster JE, Cockburn M, McMillan NC, De Vito G (2002) Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve 25(6):858–863

    Article  PubMed  Google Scholar 

  • Matsushigue KA, Hartmann K, Franchini E (2009) Taekwondo: physiological responses and match analysis. J Strength Cond Res 23(4):1112–1117

    Article  PubMed  Google Scholar 

  • Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP (2002) An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 34(4):689–694

    Article  PubMed  Google Scholar 

  • Morse CI, Tolfrey K, Thom JM, Vassilopoulos V, Maganaris CN, Narici MV (2008) Gastrocnemius muscle specific force in boys and men. J Appl Physiol 104(2):469–474

    Article  PubMed  Google Scholar 

  • Mustard BE, Lee RG (1987) Relationship between EMG patterns and kinematic properties for flexion movements at the human wrist. Exp Brain Res 66:247–256

    Article  CAS  PubMed  Google Scholar 

  • Nigg BM, Wakeling JM (2001) Impact forces and muscle tuning: a new paradigm. Exerc Sport Sci Rev 29(1):37–41

    Article  CAS  PubMed  Google Scholar 

  • O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2009) The effects of agonist and antagonist muscle activation on the knee extension moment-angle relationship in adults and children. Eur J Appl Physiol 106(6):849–856

    Article  PubMed  Google Scholar 

  • Petersen TH, Kliim-Due M, Farmer SF, Nielsen JB (2010) Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait. J Physiol 588(Pt 22):4387–4400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson DS, Martin PE (2010) Effects of age and walking speed on coactivation and cost of walking in healthy adults. Gait Posture 31(3):355–359

    Article  PubMed  Google Scholar 

  • Probst MM, Fletcher R, Seelig DS (2007) A comparison of lower-body flexibility, strength, and knee stability between karate athletes and active controls. J Strength Cond Res 21(2):451–455

    PubMed  Google Scholar 

  • Quinzi F, Camomilla V, Felici F, Di Mario A, Sbriccoli P (2013) Differences in neuromuscular control between impact and no impact roundhouse kick in athletes of different skill levels. J Electromyogr Kinesiol 23(1):140–150

    Article  PubMed  Google Scholar 

  • Quinzi F, Sbriccoli P, Alderson J, Di Mario A, Camomilla V (2014) Intra-limb coordination in karate kicking: effect of impacting or not impacting a target. Hum Mov Sci 33:108–119

    Article  PubMed  Google Scholar 

  • Russell PJ, Croce RV, Swartz EE, Decoster LC (2007) Knee-muscle activation during landings: developmental and gender comparisons. Med Sci Sports Exerc 39(1):159–170

    Article  PubMed  Google Scholar 

  • Sbriccoli P, Bazzucchi I, Rosponi A, Bernardi M, De Vito G, Felici F (2003) Amplitude and spectral characteristics of biceps Brachii sEMG depend upon speed of isometric force generation. J Electromyogr Kinesiol 13(2):139–147

    Article  CAS  PubMed  Google Scholar 

  • Sbriccoli P, Sacchetti M, Felici F, Gizzi L, Lenti M, Scotto A, De Vito G (2009) Non-invasive assessment of muscle fiber conduction velocity during an incremental maximal cycling test. J Electromyogr Kinesiol 19(6):e380–e386

    Article  PubMed  Google Scholar 

  • Sbriccoli P, Camomilla V, Di Mario A, Quinzi F, Figura F, Felici F (2010) Neuromuscular control adaptations in elite athletes: the case of top level karateka. Eur J Appl Physiol 108(6):1269–1280

    Article  PubMed  Google Scholar 

  • Staude GH, Flachenecker C, Daumer M, Wolf W (2001) Onset Detection in Surface Electromyographic Signals: a Systematic Comparison of Methods. EURASIP J Appl Si Pr 2:67–81

    Article  Google Scholar 

  • Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Wakeling JM, Von Tscharner V, Nigg BM, Stergiou P (2001) Muscle activity in the leg is tuned in response to ground reaction forces. J Appl Physiol 91(3):1307–1317

    CAS  PubMed  Google Scholar 

  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35(4):543–548

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Quinzi.

Additional information

Communicated by Fausto Baldissera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinzi, F., Camomilla, V., Felici, F. et al. Agonist and antagonist muscle activation in elite athletes: influence of age. Eur J Appl Physiol 115, 47–56 (2015). https://doi.org/10.1007/s00421-014-2990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2990-y

Keywords

Navigation