Skip to main content
Log in

In vivo specific tension of the human quadriceps femoris muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

It is not known to what extent the inter-individual variation in human muscle strength is explicable by differences in specific tension. To investigate this, a comprehensive approach was used to determine in vivo specific tension of the quadriceps femoris (QF) muscle (Method 1). Since this is a protracted technique, a simpler procedure was also developed to accurately estimate QF specific tension (Method 2). Method 1 comprised calculating patellar tendon force (F t) in 27 young, untrained males, by correcting maximum voluntary contraction (MVC) for antagonist co-activation, voluntary activation and moment arm length. For each component muscle, the physiological cross-sectional area (PCSA) was calculated as volume divided by fascicle length during MVC. Dividing F t by the sum of the four PCSAs (each multiplied by the cosine of its pennation angle during MVC) provided QF specific tension. Method 2 was a simplification of Method 1, where QF specific tension was estimated from a single anatomical CSA and vastus lateralis muscle geometry. Using Method 1, the variability in MVC (18%) and specific tension (16%) was similar. Specific tension from Method 1 (30 ± 5 N cm−2) was similar to and correlated with that of Method 2 (29 ± 5 N cm−2; R 2 = 0.67; P < 0.05). In conclusion, most of the inter-individual variability in MVC torque remains largely unexplained. Furthermore, a simple method of estimating QF specific tension provided similar values to the comprehensive approach, thereby enabling accurate estimations of QF specific tension where time and resources are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    PubMed  CAS  Google Scholar 

  • Akima H, Kano Y, Enomoto Y, Ishizu M, Okada M, Oishi Y, Katsuta S, Kuno S (2001) Muscle function in 164 men and women aged 20–84 yr. Med Sci Sports Exerc 33:220–226. doi:10.1097/00005768-200102000-00008

    Article  PubMed  CAS  Google Scholar 

  • Alexander RM, Vernon A (1975) The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud 1:115–123

    Google Scholar 

  • Baltzopoulos V (1995) A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clin Biomech (Bristol, Avon) 10:85–92. doi:10.1016/0268-0033(95)92044-M

    Article  Google Scholar 

  • Bamman MM, Newcomer BR, Larson-Meyer DE, Weinsier RL, Hunter GR (2000) Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 32:1307–1313. doi:10.1097/00005768-200007000-00019

    Article  PubMed  CAS  Google Scholar 

  • Bampouras TM, Reeves ND, Baltzopoulos V, Maganaris CN (2006) Muscle activation assessment: effects of method, stimulus number, and joint angle. Muscle Nerve 34:740–746. doi:10.1002/mus.20610

    Article  PubMed  Google Scholar 

  • Barany M, Close RI (1971) The transformation of myosin in cross-innervated rat muscles. J Physiol 213:455–474

    PubMed  CAS  Google Scholar 

  • Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495:573–586

    PubMed  CAS  Google Scholar 

  • Chapman SJ, Grindrod SR, Jones DA (1984) Cross-sectional area and force production of the quadriceps muscle. J Physiol 353:53p

    Google Scholar 

  • Chow JW, Darling WG, Ehrhardt JC (1999) Determining the force-length-velocity relations of the quadriceps muscles: II. Maximum muscle stress. J Appl Biomech 15:191–199

    Google Scholar 

  • Close R (1969) Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J Physiol 204:331–346

    PubMed  CAS  Google Scholar 

  • Cristea A, Korhonen MT, Hakkinen K, Mero A, Alen M, Sipila S, Viitasalo JT, Koljonen MJ, Suominen H, Larsson L (2008) Effects of combined strength and sprint training on regulation of muscle contraction at the whole-muscle and single-fibre levels in elite master sprinters. Acta Physiol (Oxf) 193:275–289. doi:10.1111/j.1748-1716.2008.01843.x

    Article  CAS  Google Scholar 

  • D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552:499–511. doi:10.1113/jphysiol.2003.046276

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Parker DF, Rutherford OM, Jones DA (1988) Changes in strength and cross sectional area of the elbow flexors as a result of isometric strength training. Eur J Appl Physiol Occup Physiol 57:667–670. doi:10.1007/BF01075986

    Article  PubMed  CAS  Google Scholar 

  • de Haan A, de Ruiter CJ, Lind A, Sargeant AJ (1992) Growth-related change in specific force but not in specific power of rat fast skeletal muscle. Exp Physiol 77:505–508

    PubMed  Google Scholar 

  • Degens H, Hoofd L, Binkhorst RA (1995) Specific force of the rat plantaris muscle changes with age, but not with overload. Mech Ageing Dev 78:215–219. doi:10.1016/0047-6374(94)01538-W

    Article  PubMed  CAS  Google Scholar 

  • Degens H, Soop M, Hook P, Ljungqvist O, Larsson L (1999) Post-operative effects on insulin resistance and specific tension of single human skeletal muscle fibres. Clin Sci (Lond) 97:449–455. doi:10.1042/CS19990034

    Article  CAS  Google Scholar 

  • Elder GC, Kirk J, Stewart G, Cook K, Weir D, Marshall A, Leahey L (2003) Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol 45:542–550. doi:10.1017/S0012162203000999

    Article  PubMed  Google Scholar 

  • Gorgey AS, Mahoney E, Kendall T, Dudley GA (2006) Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol 97:737–744. doi:10.1007/s00421-006-0232-7

    Article  PubMed  Google Scholar 

  • Holmback AM, Askaner K, Holtas S, Downham D, Lexell J (2002) Assessment of contractile and noncontractile components in human skeletal muscle by magnetic resonance imaging. Muscle Nerve 25:251–258. doi:10.1002/mus.10031

    Article  PubMed  Google Scholar 

  • Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Clarkson PM (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37:964–972. doi:10.1097/00005768-200505001-00881

    Article  PubMed  Google Scholar 

  • Ikai M, Fukunaga T (1970) A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int Z Angew Physiol 28:173–180

    PubMed  CAS  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129. doi:10.1016/0022-510X(73)90023-3

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Rutherford OM, Parker DF (1989) Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol 74:233–256

    PubMed  CAS  Google Scholar 

  • Kanehisa H, Ikegawa S, Fukunaga T (1994) Comparison of muscle cross-sectional area and strength between untrained women and men. Eur J Appl Physiol Occup Physiol 68:148–154. doi:10.1007/BF00244028

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Nakazawa K, Fujimoto T, Nozaki D, Miyashita M, Fukunaga T (1994) Specific tension of elbow flexor and extensor muscles based on magnetic resonance imaging. Eur J Appl Physiol Occup Physiol 68:139–147. doi:10.1007/BF00244027

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Abe T, Kuno SY, Fukunaga T (1995) Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol 72:37–43. doi:10.1007/BF00964112

    Article  PubMed  CAS  Google Scholar 

  • Kellis E, Baltzopoulos V (1997) The effects of antagonist moment on the resultant knee joint moment during isokinetic testing of the knee extensors. Eur J Appl Physiol Occup Physiol 76:253–259. doi:10.1007/s004210050244

    Article  PubMed  CAS  Google Scholar 

  • Kellis E, Baltzopoulos V (1999) In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion. Clin Biomech (Bristol, Avon) 14:118–124. doi:10.1016/S0268-0033(98)00055-2

    Article  CAS  Google Scholar 

  • Kendall TL, Black CD, Elder CP, Gorgey A, Dudley GA (2006) Determining the extent of neural activation during maximal effort. Med Sci Sports Exerc 38:1470–1475. doi:10.1249/01.mss.0000228953.52473.ce

    Article  PubMed  Google Scholar 

  • Kent-Braun JA, Ng AV, Young K (2000) Skeletal muscle contractile and noncontractile components in young and older women and men. J Appl Physiol 88:662–668

    PubMed  CAS  Google Scholar 

  • Lieber RL, Johansson CB, Vahlsing HL, Hargens AR, Feringa ER (1986) Long-term effects of spinal cord transection on fast and slow rat skeletal muscle. I. Contractile properties. Exp Neurol 91:423–434. doi:10.1016/0014-4886(86)90041-5

    Article  PubMed  CAS  Google Scholar 

  • Luden N, Minchev K, Hayes E, Louis ES, Trappe TA, Trappe S (2008) Human vastus lateralis and soleus muscles display divergent cellular contractile properties. Am J Physiol Regul Integr Comp Physiol 295(5):R1593–R1598

    PubMed  CAS  Google Scholar 

  • Macaluso A, Nimmo MA, Foster JE, Cockburn M, McMillan NC, De Vito G (2002) Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve 25:858–863. doi:10.1002/mus.10113

    Article  PubMed  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Ball D, Sargeant AJ (2001) In vivo specific tension of human skeletal muscle. J Appl Physiol 90:865–872

    PubMed  CAS  Google Scholar 

  • Maughan RJ, Watson JS, Weir J (1983) Strength and cross-sectional area of human skeletal muscle. J Physiol 338:37–49

    PubMed  CAS  Google Scholar 

  • Maughan RJ, Watson JS, Weir J (1984) Muscle strength and cross-sectional area in man: a comparison of strength-trained and untrained subjects. Br J Sports Med 18:149–157. doi:10.1136/bjsm.18.3.149

    Article  PubMed  CAS  Google Scholar 

  • Morse CI, Degens H, Jones DA (2007) The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol 100:267–274. doi:10.1007/s00421-007-0429-4

    Article  PubMed  Google Scholar 

  • Narici MV, Roi GS, Landoni L (1988) Force of knee extensor and flexor muscles and cross-sectional area determined by nuclear magnetic resonance imaging. Eur J Appl Physiol Occup Physiol 57:39–44. doi:10.1007/BF00691235

    Article  PubMed  CAS  Google Scholar 

  • Narici MV, Landoni L, Minetti AE (1992) Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol 65:438–444. doi:10.1007/BF00243511

    Article  PubMed  CAS  Google Scholar 

  • Payne AM, Zheng Z, Gonzalez E, Wang ZM, Messi ML, Delbono O (2004) External Ca(2+)-dependent excitation–contraction coupling in a population of ageing mouse skeletal muscle fibres. J Physiol 560:137–155. doi:10.1113/jphysiol.2004.067322

    Article  PubMed  CAS  Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2004) Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol 96:885–892. doi:10.1152/japplphysiol.00688.2003

    Article  PubMed  CAS  Google Scholar 

  • Rutherford OM, Jones DA, Newham DJ (1986) Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 49:1288–1291. doi:10.1136/jnnp.49.11.1288

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Engstrom CM, Loeb GE (1993) Morphometry of human thigh muscles. Determination of fascicle architecture by magnetic resonance imaging. J Anat 182(Pt 2):249–257

    PubMed  Google Scholar 

  • Seynnes OR, Maganaris CN, de Boer MD, di Prampero PE, Narici MV (2008) Early structural adaptations to unloading in the human calf muscles. Acta Physiol (Oxf) 193(3):265–274

    Article  CAS  Google Scholar 

  • Stubbings AK, Moore AJ, Dusmet M, Goldstraw P, West TG, Polkey MI, Ferenczi MA (2008) Physiological properties of human diaphragm muscle fibres and the effect of chronic obstructive pulmonary disease. J Physiol 586:2637–2650. doi:10.1113/jphysiol.2007.149799

    Article  PubMed  CAS  Google Scholar 

  • Trappe TA, Lindquist DM, Carrithers JA (2001) Muscle-specific atrophy of the quadriceps femoris with aging. J Appl Physiol 90:2070–2074

    PubMed  CAS  Google Scholar 

  • Tsaopoulos DE, Baltzopoulos V, Maganaris CN (2006) Human patellar tendon moment arm length: measurement considerations and clinical implications for joint loading assessment. Clin Biomech (Bristol, Avon) 21:657–667. doi:10.1016/j.clinbiomech.2006.02.009

    Article  Google Scholar 

  • Tsaopoulos DE, Baltzopoulos V, Richards PJ, Maganaris CN (2007) In vivo changes in the human patellar tendon moment arm length with different modes and intensities of muscle contraction. J Biomech 40:3325–3332. doi:10.1016/j.jbiomech.2007.05.005

    Article  PubMed  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 27:5–283

    Google Scholar 

  • Widrick JJ, Stelzer JE, Shoepe TC, Garner DP (2002) Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol 283:R408–R416

    PubMed  CAS  Google Scholar 

  • Williams AG, Day SH, Folland JP, Gohlke P, Dhamrait S, Montgomery HE (2005) Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med Sci Sports Exerc 37:944–948

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Erskine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erskine, R.M., Jones, D.A., Maganaris, C.N. et al. In vivo specific tension of the human quadriceps femoris muscle. Eur J Appl Physiol 106, 827–838 (2009). https://doi.org/10.1007/s00421-009-1085-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1085-7

Keywords

Navigation