Skip to main content
Log in

Serpentinization of New Caledonia peridotites: from depth to (sub-)surface

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Serpentinization processes occur at geological settings notably during oceanic subduction and obduction, where mantle rocks interact with water. Different types of serpentine minerals form according to temperature and pressure conditions, and potentially chemical exchanges. Therefore, the characterization of serpentine minerals, and the possible occurrence of multiple serpentine generations in mantle rocks provide essential constraints on the conditions of fluid–rock interactions in the mantle. The serpentinite sole of the Peridotite Nappe of New Caledonia (Southwest Pacific) is the result of several superimposed serpentinisation events. The latter were discriminated using mineralogical and geochemical approaches and modeling. Lizardite represents more than 80% of the entire serpentine content of the ophiolite. It is crosscut by several veins of other serpentine species in the serpentinite sole. The relative chronology appears as follows: lizardite 1 → lizardite 2 → antigorite → chrysotile → polygonal serpentine. The transition from primary/magmatic minerals to lizardite 1 is almost isochemical. Then, the development of lizardite 2 yields an enrichment in fluid-mobile elements such as Cs, Rb, Ba, U and light rare-earth elements and an apparent increase of the Fe3+/FeT ratio. The modeling of δ18O values (1.9–13.9‰) and δD values (88–106‰) of all serpentine species through Monte-Carlo simulations show that New Caledonia serpentines were mainly formed in equilibrium with fluids released by the dehydration of altered oceanic crust (AOC) during subduction between 250 and 350 °C. AOC-derived fluids are not the unique source of fluids since a low temperature (100–150 °C) meteoric component is also predicted by the models. Thus, serpentine acts as a tape-recorder of fluid–rock interactions into the mantle from depth to (sub-)surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agard P, Yamato P, Soret M, Prigent C, Guillot S, Plunder A, Dubacq B, Chauvet A, Monié P (2016) Plate interface rheological switches during subduction infancy: control on slab penetration and metamorphic sole formation. Earth Planet Sci Lett 451:208–220

    Google Scholar 

  • Agrinier P, Cannat M (1997) Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge(23 °N). Proc Ocean Drill Program Sci Results 153:381–388

    Google Scholar 

  • Agrinier P, Hékinian R, Bideau D, Javoy M (1995) O and H stable isotope compositions of oceanic crust and upper mantle rocks exposed in the Hess Deep near the Galapagos Triple Junction. Earth Planet Sci Lett 136(3–4):183–196

    Google Scholar 

  • Aitchison JC, Clarke GL, Meffre S, Cluzel D (1995) Eocene arc-continent collision in New Caledonia and implications for regional southwest Pacific tectonic evolution. Geology 23(2):161

    Google Scholar 

  • Aizawa Y, Tatsumi Y, Yamada H (1999) Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism. Island Arc 8(1):38–46

    Google Scholar 

  • Alt JC (2003) Stable isotopic composition of upper oceanic crust formed at a fast spreading ridge, ODP Site 801. Geochem Geophys Geosyst 4(5):8908. https://doi.org/10.1029/2002GC000400

  • Alt JC, Shanks WC III (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67(4):641–653

    Google Scholar 

  • Alt JC, Shanks WC III (2006) Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth Planet Sci Lett 242(3):272–285

    Google Scholar 

  • Alt JC, Shanks WC, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8:Q08002. https://doi.org/10.1029/2007GC001617

  • Alt JC, Garrido CJ, Shanks WC III, Turchyn A, Padrón-Navarta JA, Sánchez-Vizcaíno VL, Pugnaire MTG, Marchesi C (2012) Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett 327–328:1–11

    Google Scholar 

  • Andréani M, Mével C, Boullier AM, Escartin J (2007) Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem Geophys Geosyst 8(2):24

    Google Scholar 

  • Andréani M, Escartin J, Delacour A, Ildefonse B, Godard M, Dyment J, Fallick AE, Fouquet Y (2014) Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36° 14′ N). Geochem Geophys Geosyst 15(9):3543–3571

    Google Scholar 

  • Auzende AL, Daniel I, Reynard B, Lemaire C, Fo G (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miner 31(5):269–277

    Google Scholar 

  • Avias J (1967) Overthrust structure of the main ultrabasic new caledonian massives. Tectonophysics 4(4–6):531–541

    Google Scholar 

  • Bailey EH, Ragnarsdottir KV (1994) Uranium and thorium solubilities in subduction zone fluids. Earth Planet Sci Lett 124(1–4):119–129

    Google Scholar 

  • Bali E, Audétat A, Keppler H (2010) The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contrib Mineral Petrol 161(4):597–613

    Google Scholar 

  • Beard JS, Frost BR (2017) The stoichiometric effects of ferric iron substitutions in serpentine from microprobe data. Int Geol Rev 59(5–6):541–547

    Google Scholar 

  • Bonatti E, Lawrence JR, Morandi N (1984) Serpentinization of oceanic peridotites: temperature dependence of mineralogy and boron content. Earth Planet Sci Lett 70:88–94

    Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59(16):3331–3350

    Google Scholar 

  • Burkhard DJM, O'Neil JR (1988) Contrasting serpentinization processes in the eastern Central Alps. Contrib Mineral Petrol 99(4):498–506

    Google Scholar 

  • Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E (1995) Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22–24°N). Geology 23(1):49–52

    Google Scholar 

  • Cathelineau M, Quesnel B, Gautier P, Boulvais P, Couteau C, Drouillet M (2015) Nickel dispersion and enrichment at the bottom of the regolith: formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia). Miner Deposita 51(2):271–282

    Google Scholar 

  • Cathelineau M, Myagkiy A, Quesnel B, Boiron M-C, Gautier P, Boulvais P, Ulrich M, Truche L, Golfier F, Drouillet M (2016) Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia). Miner Deposita 52(7):1–16

    Google Scholar 

  • Chen JH, Edwards RL, Wasserburg GJ (1986) 238U,234U and232Th in seawater. Earth Planet Sci Lett 80(3–4):241–251

    Google Scholar 

  • Chenin P, Manatschal G, Picazo S, Müntener O, Karner G, Johnson C, Ulrich M (2017) Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere 13(2):559–576.  https://doi.org/10.1130/GES01363.1

  • Cluzel D, Picard C, Aitchison JC, Laporte C, Meffre S, Parat F (1997) La nappe de Poya (ex-formation des Basaltes) de Nouvelle-Calédonie (Pacifique Sud-Ouest): un plateau océanique Campanien-Paléocène supérieur obducté à l'Eocène supérieur. CR Acad Sci Paris 324(6):443–451

    Google Scholar 

  • Cluzel D, Chiron D, Courme M-D (1998) Discordance de l'Éocène supérieur et événements pré-obduction en Nouvelle-Calédonie. Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science 327(7):485–491

    Google Scholar 

  • Cluzel D, Aitchison JC, Picard C (2001) Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): geodynamic implications. Tectonophysics 340(1–2):23–59

    Google Scholar 

  • Cluzel D, Meffre S, Maurizot P, Crawford AJ (2006) Earliest Eocene (53 Ma) convergence in the Southwest Pacific: evidence from pre-obduction dikes in the ophiolite of New Caledonia. Terra Nova 18(6):395–402

    Google Scholar 

  • Cluzel D, Jourdan F, Meffre S, Maurizot P, Lesimple S (2012a) The metamorphic sole of New Caledonia ophiolite: 40Ar/39Ar, U-Pb, and geochemical evidence for subduction inception at a spreading ridge. Tectonics 31(3):3016

    Google Scholar 

  • Cluzel D, Maurizot P, Collot J (2012b) An outline of the Geology of New Caledonia; from Permian-Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene evolution. Episodes 35(1):72–86

    Google Scholar 

  • Cluzel D, Ulrich M, Jourdan F, Meffre S, Paquette J-L, Audet M-A, Secchiari A, Maurizot P (2016) Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc. Lithos 260:429–442

    Google Scholar 

  • Cluzel D, Whitten M, Meffre S, Aitchison JC, Maurizot P (2018) A Reappraisal of the Poya Terrane (New Caledonia): accreted Late Cretaceous-Paleocene Marginal Basin Upper Crust, Passive Margin Sediments, and Early Eocene E-MORB Sill Complex. Tectonics 37(1):48–70

    Google Scholar 

  • Cluzel D, Boulvais P, Iseppi M, Lahondère D, Lesimple S, Maurizot P, Paquette J, Tarantola A, Ulrich M (2019) Slab-derived origin of tremolite–antigorite veins in a supra-subduction ophiolite: the Peridotite Nappe (New Caledonia) as a case study International Journal of Earth Sciences 109(1):171–196. https://doi.org/10.1007/s00531-019-01796-6

  • Debret B, Andréani M, Godard M, Nicollet C, Schwartz S, Lafay R (2013) Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: a LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chem Geol 357:117–133

    Google Scholar 

  • Delacour A, Früh-Green GL, Frank M, Gutjahr M, Kelley DS (2008) Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chem Geol 254(1–2):19–35

    Google Scholar 

  • Deloule E, Albarede F, Sheppard SMF (1991) Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth Planet Sci Lett 105(4):543–553

    Google Scholar 

  • Dequincey O, Chabaux F, Clauer N, Sigmarsson O, Liewig N, Leprun JC (2002) Chemical mobilizations in laterites: evidence from trace elements and 238U–234U-230Th disequilibria. Geochim Cosmochim Acta 66(7):1197–1210

    Google Scholar 

  • Deschamps F (2010) Caractérisation in situ des serpentines en contexte de subduction: De la nature à l'expérience, Thesis, Université Joseph Fourier, Grenoble, p 308

  • Deschamps F, Guillot S, Godard M, Andréani M, Hattori KH (2011) Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova 23(3):171–178

    Google Scholar 

  • Deschamps F, Godard M, Guillot S, Chauvel C, Andréani M, Hattori KH, Wunder B, France L (2012) Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: examples from Cuba and Dominican Republic. Chem Geol 312–313:93–117

    Google Scholar 

  • Deschamps F, Godard M, Guillot S, Hattori KH (2013) Geochemistry of subduction zone serpentinites: a review. Lithos 178:96–127

    Google Scholar 

  • Deville E, Prinzhofer A (2016) The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: a major and noble gases study of fluid seepages in New Caledonia. Chem Geol 440:139–147

    Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Stable Isotope Geochem 43:319–364

    Google Scholar 

  • Eiler JM, McInnes B, Valley JW, Graham CM, Stolper EM (1998) Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393(6687):777–781

    Google Scholar 

  • Eissen J-P, Crawford AJ, Cotten J, Meffre S, Bellon H, Delaune M (1998) Geochemistry and tectonic significance of basalts in the Poya Terrane. New Caledonia Tectonophys 284(3–4):203–219

    Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296(5854):214–219

    Google Scholar 

  • Evans B, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of chrystotile and antigorite in the serpentine multisystem. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Review 46(6):479–506

    Google Scholar 

  • Frisby C, Bizimis M, Mallick S (2016) Seawater-derived rare earth element addition to abyssal peridotites during serpentinization. Lithos 248–251:432–454

    Google Scholar 

  • Fritsch E, Juillot F, Dublet G, Fonteneau L, Fandeur D, Martin E, Caner L, Auzende AL, Grauby O, Beaufort D (2016) An alternative model for the formation of hydrous Mg/Ni layer silicates ('deweylite'/'garnierite') in faulted peridotites of New Caledonia: I. Texture and mineralogy of a paragenetic succession of silicate infillings. Eur J Mineral 28(2):295–311

    Google Scholar 

  • Frost BR, Evans KA, Swapp SM, Beard JS, Mothersole FE (2013) The process of serpentinization in dunite from New Caledonia. Lithos 178:24–39

    Google Scholar 

  • Früh-Green G, Plas A, Lécuyer C (1996) Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep(Site 895). Proc ODP Sci Results 147:255–291

    Google Scholar 

  • Früh-Green G, Scambelluri M, Vallis F (2001) OH isotope ratios of high pressure ultramafic rocks: implications for fluid sources and mobility in the subducted hydrous mantle. Contrib Miner Petrol 141(2):145–159

    Google Scholar 

  • Fryer P (1992) A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. In: vol Fryer P, Pearce JA, Stokking LB et al (eds) Proceedings of the ODP, Science Results, 125: College Station, TX (Ocean Drilling Program) pp 593–614

  • Gautier P, Quesnel B, Boulvais P, Cathelineau M (2016) The emplacement of the Peridotite Nappe of New Caledonia and its bearing on the tectonics of obduction. Tectonics 35(12):3070–3094

    Google Scholar 

  • Gillard M, Tugend J, Müntener O, Manatschal G, Karner G, Autin J, Sauter D, Figueredo PH, Ulrich M (2019) The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins. Earth-Sci Rev 196:102882

    Google Scholar 

  • Guillot S, Hattori KH, de Sigoyer J (2000) Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya. Geology 28(3):199

    Google Scholar 

  • Guillot S, Hattori KH, Agard P, Schwartz S, Vidal O (2009) Exhumation processes in oceanic and continental subduction contexts: a review. Subduction zone geodynamics. Springer, New York, pp 175–205

    Google Scholar 

  • Guillot S, Schwartz S, Reynard B, Agard P, Prigent C (2015) Tectonic significance of serpentinites. Tectonophysics 646:1–19

    Google Scholar 

  • Hattori KH, Guillot S (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31(6):525–528

    Google Scholar 

  • Hattori KH, Guillot S (2007) Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochem Geophys Geosyst 8(9):Q09010. https://doi.org/10.1029/2007GC001594

  • Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212(3–4):417–432

    Google Scholar 

  • Iwamori H (1998) Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett 160(1):65–80

    Google Scholar 

  • Iyer K, Austrheim H, John T, Jamtveit B (2008) Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex. Norway Chem Geol 249(1–2):66–90

    Google Scholar 

  • Klein F, Bach W, McCollom TM (2013) Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178:55–69

    Google Scholar 

  • Klein F, Marschall HR, Bowring SA, Humphris SE, Horning G (2017) Mid-ocean ridge serpentinite in the Puerto Rico Trench: from seafloor spreading to subduction. J Petrology 58(9):1729–1754

    Google Scholar 

  • Kodolanyi J, Pettke T, Spandler C, Kamber BS, Gmeling K (2012) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J Petrol 53(2):235–270

    Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148(1–2):193–205

    Google Scholar 

  • Kyser TK, O’Hanley DS, Wicks FJ (1999) The origin of fluids associated with serpentinization processes: evidence from stable-isotope compositions. Can Mineral 37(1):223–237

    Google Scholar 

  • Lafay R, Deschamps F, Schwartz S, Guillot S, Godard M, Debret B, Nicollet C (2013) High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: example from the Piedmont zone of the western Alps. Chem Geol 343:38–54

    Google Scholar 

  • Lemaire C (2000) Application des spectroscopies vibrationnelles à la détection d'amiante dans les matériaux et à l'étude des serpentines. Université de Paris 7

  • Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11(9):899–904

    Google Scholar 

  • Magaritz M, Taylor HP (1974) Oxygen and hydrogen isotope studies of serpentinization in the Troodos ophiolite complex. Cyprus Earth Planet Sci Lett 23(1):8–14

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Google Scholar 

  • McRae ME (2020) Nickel. In: U.S. Geological Survey, 2020, Mineral commodity summaries pp 112–113.https://doi.org/10.3133/mcs2020

  • Mével C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geosci 335(10–11):825–852

    Google Scholar 

  • Monnin C, Chavagnac V, Boulart C, Ménez B, Gérard M, Gérard E, Pisapia C, Quéméneur M, Erauso G, Postec A, Guentas-Dombrowski L, Payri C, Pelletier B (2014) Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia). Biogeosciences 11(20):5687–5706

    Google Scholar 

  • Mothersole FE, Evans K, Frost BR (2017) Abyssal and hydrated mantle wedge serpentinised peridotites: a comparison of the 15°20'N fracture zone and New Caledonia serpentinites. Contrib Mineral Petrol 172(8):69

    Google Scholar 

  • Muñoz M, Ulrich M, Cathelineau M, Mathon O (2019) Weathering processes and crystal chemistry of Ni-bearing minerals in saprock horizons of New Caledonia ophiolite. J Geochem Explor 198:82–99

    Google Scholar 

  • Nicolini E, Rogers K, Rakowski D (2016) Baseline geochemical characterisation of a vulnerable tropical karstic aquifer; Lifou, New Caledonia. Biochem Pharmacol 5:114–130

    Google Scholar 

  • O’Hanley DS (1996) Serpentinites: records of tectonic and petrological history. Oxford University Press, Oxford

    Google Scholar 

  • Orloff O (1968) Etude geologique et geomorphologique des massifs d'ultrabasites compris entre Houailou et Canala (Nouvelle-Caledonie)

  • Peacock SM (1990) Fluid processes in subduction zones. Science 248(4):329–337

    Google Scholar 

  • Peacock SM, Hyndman RD (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys Res Lett 26(16):2517–2520

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A Compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res 21(1):115–144

    Google Scholar 

  • Peters D, Bretscher A, John T, Scambelluri M, Pettke T (2017) Fluid-mobile elements in serpentinites: constraints on serpentinisation environments and element cycling in subduction zones. Chem Geol 466:654–666

    Google Scholar 

  • Picazo S, Cannat M, Delacour A, Escartín J, Rouméjon S, Silantyev S (2012) Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°–15°N: The role of magmatic injections and hydrothermal alteration. Geochem Geophys Geosyst 13(9):Q04G09. https://doi.org/10.1029/2012GC004121

  • Pinto VHG, Manatschal G, Karpoff AM, Ulrich M, Viana AR (2016) Seawater storage and element transfer associated with mantle serpentinization in magma-poor rifted margins: a quantitative approach. Earth Planet Sci Lett 459:1–11

    Google Scholar 

  • Pirard C, Hermann J, O'Neill HSC (2013) Petrology and Geochemistry of the Crust-Mantle Boundary in a Nascent Arc, Massif du Sud Ophiolite, New Caledonia. SW Pac J Petrol 54(9):1759–1792

    Google Scholar 

  • Plank T (2014) The chemical composition of subducted sediments. Treatise on geochemistry, vol 4. Elsevier, Amsterdam, pp 607–629

    Google Scholar 

  • Poli S, Schmidt MW (2002) Petrology of subducted slabs. Ann Rev Earth Planet Sci 30(1):207–235

    Google Scholar 

  • Quesnel B, Boulvais P, Gautier P, Cathelineau M, Maurizot P, Cluzel D, Ulrich M, Guillot S, Lesimple S, Couteau C (2013) Syn-tectonic, meteoric water-derived carbonation of the New Caledonia peridotite nappe. Geology 41(10):1063–1066

    Google Scholar 

  • Quesnel B, Boulvais P, Gautier P, Cathelineau M, John CM, Dierick M, Agrinier P, Drouillet M (2016a) Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe. Geochim Cosmochim Acta 183:234–249

    Google Scholar 

  • Quesnel B, Gautier P, Cathelineau M, Boulvais P, Couteau C, Drouillet M (2016b) The internal deformation of the Peridotite Nappe of New Caledonia: a structural study of serpentine-bearing faults and shear zones in the Koniambo Massif. J Struct Geol 85:51–67

    Google Scholar 

  • Reynard B (2013) Serpentine in active subduction zones. Lithos 178:171–185

    Google Scholar 

  • Ribeiro Da Costa I, Barriga FJAS, Viti C, Mellini M, Wicks FJ (2008) Antigorite in deformed serpentinites from the Mid-Atlantic Ridge. Eur J Mineral 20:563–572

    Google Scholar 

  • Rouméjon S, Cannat M, Agrinier P, Godard M, Andréani M (2015) Serpentinization and fluid pathways in tectonically exhumed peridotites from the southwest Indian Ridge (62–65 E). J Petrol 56(4):703–734

    Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223(1–2):17–34

    Google Scholar 

  • Saccocia PJ, Seewald JS, Shanks WC III (2009) Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450°C, 50 MPa. Geochim Cosmochim Acta 73(22):6789–6804

    Google Scholar 

  • Sakai H, Tsutsumi M (1978) D-H fractionation factors between serpentine and water at 100°C to 500°C and 2000 bar water-pressure, and D-H ratios of natural serpentines. Earth Planet Sci Lett 40(2):231–242

    Google Scholar 

  • Sakai R, Kusakabe M, Noto M, Ishii T (1990) Origin of waters responsible for serpentinization of the Izu-Ogasawara-Mariana forearc seamounts in view of hydrogen and oxygen isotope ratios. Earth Planet Sci Lett 100(1–3):291–303

    Google Scholar 

  • Salters VJM, Longhi JE, Bizimis M (2002) Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem Geophys Geosyst 3(7):1–23

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05B07. https://doi.org/10.1029/2003GC000597

  • Sano T, Hasenaka T, Shimaoka A, Yonezawa C, Fukuoka T (2001) Boron contents of Japan Trench sediments and Iwate basaltic lavas, Northeast Japan arc: estimation of sediment-derived fluid contribution in mantle wedge. Earth Planet Sci Lett 186(2):187–198

    Google Scholar 

  • Savin SM, Lee M (1988) Isotopic studies of phyllosilicates. In: Bailey S (ed) Hydrous Phyllosilicates (exclusive of micas), vol 19. Mineralogical Society of America, Chantilly, pp 189–223

    Google Scholar 

  • Savov IP, Ryan J, D'Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6(4);Q04J1. https://doi.org/10.1029/2004GC000777

  • Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613

    Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163(1):361–379

    Google Scholar 

  • Schwartz S, Allemand P, Guillot S (2001) Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics 342(1–2):193–206

    Google Scholar 

  • Schwarzenbach EM, Caddick MJ, Beard JS, Bodnar RJ (2015) Serpentinization, element transfer, and the progressive development of zoning in veins: evidence from a partially serpentinized harzburgite. Contrib Miner Petrol 171(1):1–22

    Google Scholar 

  • Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D (2016) Melt extraction and enrichment processes in the New Caledonia lherzolites: evidence from geochemical and Sr–Nd isotope data. Lithos 260:28–43

    Google Scholar 

  • Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D (2019) Sr, Nd, Pb and trace element systematics of the New Caledonia harzburgites: tracking source depletion and contamination processes in a SSZ setting. Geosci Front 11:37–55

    Google Scholar 

  • Sharp Z (1992) In situ laser microprobe techniques for stable isotope analysis. Chem Geol 101:3–19

    Google Scholar 

  • Sharp Z, Atudorei V, Durakiewicz T (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol 178(1–4):197–210

    Google Scholar 

  • Sheppard SMF, Nielsen RL, Taylor HP (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ Geol 64(7):755–777

    Google Scholar 

  • Smith H, Spivack A, Staudigel H, Hart S (1995) The boron isotopic composition of altered oceanic crust. Chem Geol 126(2):119–135. https://doi.org/10.1016/0009-2541(95)00113-6

  • Staudigel H, Hart SR, Richardson SH (1981) Alteration of the oceanic crust: processes and timing. Earth Planet Sci Lett 52(2):311–327

    Google Scholar 

  • Staudigel H, Plank T, White B, Schmincke H (1996) Geochemical fluxes during seafloor alteration of the basaltic upper oceanic Crust: DSDP sites 417 and 418, in Subduction Top to Bottom. 96:19–38. https://doi.org/10.1029/gm096p0019

  • Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1012

    Google Scholar 

  • Tenthorey E, Hermann J (2004) Composition of fluids during serpentinite breakdown in subduction zones: evidence for limited boron mobility. Geology 32(1):865

    Google Scholar 

  • Thakurta J, Ripley EM, Li C (2009) Oxygen isotopic variability associated with multiple stages of serpentinization, Duke Island Complex, southeastern Alaska. Geochim Cosmochim Acta 73(20):6298–6312

    Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5212):858–861

    Google Scholar 

  • Ulmer P, Trommsdorff V (1999) Phase relations of hydrous mantle subducting to 300km. Geochem Soc Spec Publ 6:259–281

    Google Scholar 

  • Ulrich M, Picard C, Guillot S, Chauvel C, Cluzel D, Meffre S (2010) Multiple melting stages and refertilization as indicators for ridge to subduction formation: the New Caledonia ophiolite. Lithos 115(1):223–236

    Google Scholar 

  • Ulrich M, Muñoz M, Guillot S, Cathelineau M, Picard C, Quesnel B, Boulvais P, Couteau C (2014) Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite. Contrib Miner Petrol 167(1):952–1019

    Google Scholar 

  • Ulrich M, Cathelineau M, Muñoz M, Boiron M-C, Teitler Y, Karpoff AM (2019) The relative distribution of critical (Sc, REE) and transition metals (Ni Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia. J Geochem Explor 197:93–113

    Google Scholar 

  • Wenner D, Taylor H (1971) Temperatures of serpentinization of ultramafic rocks based on O 18/O 16 fractionation between coexisting serpentine and magnetite. Contrib Miner Petrol 32(3):165–185

    Google Scholar 

  • Wenner DB, Taylor HP (1973) Oxygen and hydrogen isotope studies of the serpentinization of ultramafic rocks in oceanic environments and continental ophiolite complexes. Am J Sci 273(3):207

    Google Scholar 

  • Whattam SA, Malpas J, Ali JR, Smith IEM (2008) New SW Pacific tectonic model: cyclical intraoceanic magmatic arc construction and near-coeval emplacement along the Australia-Pacific margin in the Cenozoic. Geochem Geophys Geosyst 9(3):Q03021. https://doi.org/10.1029/2007GC001710

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72

    Google Scholar 

  • Wunder B, Wirth R, Gottschalk M (2001) Antigorite: pressure and temperature dependence of polysomatism and water content. Eur J Mineral 13(3):485

    Google Scholar 

  • Zheng Y (1993) Calculation of oxygen-isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263

    Google Scholar 

Download references

Acknowledgements

We thank Claire Bassoulet for her help during LA-ICP-MS measurements at Géosciences Ocean laboratory (Brest, France). We also thank Olivier Rouer (SCMEM, Nancy, France) for his help during electron microprobe analyses. Marie-Camille Caumon (Géoressoures, Nancy, France), and Gilles Montagnac (Laboratoire de Géologie, ENS Lyon, France) are thanked for their contributions during Raman spectroscopy analyses. Benita Putlitz and Thorsten Wennemann (ISTE, University of Lausanne, Switzerland) are acknowledged for their help during the measurement of O and H isotopes. Sampling in New Caledonia was partly funded by the National Centre for Technological Research CNRT “Nickel et son environnement” based in Nouméa, New Caledonia (Project grant: 8PS2013-CNRT.CNRS/SCANDIUM) and Labex Ressources21 (supported by the French National Research Agency through the National Program Investissements d'Avenir, reference ANR-10-LABX-21–LABEXRESSOURCES 21). The fieldwork benefited from the help of Koniambo S.A. Juan Carlos de Obeson, an anonymous reviewer and the editor Othmar Müntener are warmly acknowledged for their detailed and constructive suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ulrich.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 442 kb)

Supplementary file2 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulrich, M., Muñoz, M., Boulvais, P. et al. Serpentinization of New Caledonia peridotites: from depth to (sub-)surface. Contrib Mineral Petrol 175, 91 (2020). https://doi.org/10.1007/s00410-020-01713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01713-0

Keywords

Navigation