Skip to main content
Log in

Melt evolution in subarc mantle: evidence from heating experiments on spinel-hosted melt inclusions in peridotite xenoliths from the andesitic Avacha volcano (Kamchatka, Russia)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Glass-bearing inclusions hosted by Cr-spinel in harzburgite xenoliths from Avacha are grouped based on homogenization temperatures and daughter minerals into high-T (1,200°C; opx + cpx), intermediate (900–1,100°C; cpx ± amph), and low-T (900°C; amph) and are commonly accompanied by larger “melt pockets”. Unlike previous work on unheated inclusions and interstitial glass in xenoliths from Kamchatka, the homogenized glass compositions in this study are not affected by low-pressure melt fractionation during transport and cooling or by interaction with host magma. Primary melt compositions constrained for each inclusion type differ in major and trace element abundances and were formed by different events, but all are silica saturated, Ca-rich, and K-poor, with enrichments in LREE, Sr, Rb, and Ba and negative Nb anomalies. These melts are inferred to have been formed with participation of fluids produced by dehydration of slab materials. The high-T inclusions trapped liquids produced by ancient high-degree, fluid-induced melting in the mantle wedge. The low-T inclusions are related to percolation of low-T melts or hydrous fluids in arc mantle lithosphere. Melt pockets arise from localized heating and fluid-assisted melting induced by rising magmas shortly before the entrapment of the xenoliths. The “high-T” melt inclusions in Avacha xenoliths are unique in preserving evidence of ancient, high-T melting events in arc mantle, whereas the published data appear to characterize pre-eruption enrichment events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ariskin AA, Nikolaev GS (1996) An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 1. Chromian spinels. Contrib Miner Petrol 123(3):282–292

    Article  Google Scholar 

  • Bénard A, Ionov DA (2010) Melt-rock interaction in supra-subduction mantle: evidence from veined peridotites from the Avacha volcano, Kamchatka. Geophys Res Abstr 12:EGU2010–EGU2112

    Google Scholar 

  • Bénard A, Palle S, Doucet LS, Ionov DA (2011) Three-dimensional imaging of sulfides in silicate rocks at sub-micron resolution with multi-photon microscopy. Microsc Microanal (in press)

  • Bodinier J-L, Merlet C, Bedini RM, Simien F, Remaidi M, Garrido CJ (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60(3):545–550

    Article  Google Scholar 

  • Braitseva OA, Bazanova LI, Melekestsev IV, Sulerzhitskiy LD (1998) Large Holocene eruptions of Avacha volcano, Kamchatka (7250–3700 14C years B.P.). Volcanol Seismol 20(1):1–27

    Google Scholar 

  • Castellana B (1998) Geology, chemostratigraphy, and petrogenesis of the Avachinskiy volcano, Kamchatka, Russia. PhD thesis, University of California, Los Angeles, 365 p

  • Churikova T, Wörner G, Mironov N, Kronz A (2007) Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc. Contrib Mineral Petrol 154(2):217–239

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183(1–4):5–24

    Article  Google Scholar 

  • Eiler JM, Schiano P, Valley JW, Kita NT, Stolper EM (2007) Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst 8:Q09012. doi:10.1029/2006GC001503

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346

    Article  Google Scholar 

  • Gorbatov A, Dominguez J, Suarez G, Kostoglodov V, Zhao D, Gordeev E (1999) Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula. Geophys J Int 137(2): 269-279. doi:10.1046/j.1365-246X.1999.t01-1-00801.x

    Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Muntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249(1–2):74–89

    Article  Google Scholar 

  • Halama R, Savov I, Rudnick R, McDonough W (2009) Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Miner Petrol 158(2):197–222

    Article  Google Scholar 

  • Hirschmann MM, Asimov PD, Ghiorso MS, Stolper EM (1999) Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production. J Petrol 40:831–851

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Hopp J, Ionov DA (2011) Tracing partial melting and subduction-related metasomatism in the Kamchatkan mantle wedge using noble gas compositions. Earth Planet Sci Lett 302(1–2):121–131. doi:10.1016/j.epsl.2010.12.001

  • Ionov DA (2010) Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. J Petrol 51(1–2):327–361

    Article  Google Scholar 

  • Ionov DA, Seitz HM (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources versus eruption histories. Earth Planet Sci Lett 266(3–4):316–331

    Article  Google Scholar 

  • Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced melting in mantle xenoliths from Mongolia. J Petrol 35(3):753–785

    Article  Google Scholar 

  • Ishimaru S, Arai S (2009) Highly silicic glasses in peridotite xenoliths from Avacha volcano, Kamchatka arc; implications for melting and metasomatism within the sub-arc mantle. Lithos 107(1–2):93–106

    Article  Google Scholar 

  • Ishimaru S, Arai S, Ishida Y, Shirasaka M, Okrugin VM (2007) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka. J Petrol 48(2):395–433. doi:10.1093/petrology/egl065

    Article  Google Scholar 

  • Kaeser B, Kalt A, Pettke T (2007) Crystallization and breakdown of metasomatic phases in graphite-bearing peridotite xenoliths from Marsabit (Kenya). J Petrol 48(9):1725–1760

    Article  Google Scholar 

  • Kalfoun F, Ionov D, Merlet C (2002) HFSE residence and Nb-Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet Sci Lett 199(1–2):49–65

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Eggins S, Mühe R (1997) Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth Planet Sci Lett 151:205–223

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671

    Article  Google Scholar 

  • Kamenetsky VS, Sobolev AV, Eggins SM, Crawford AJ, Arculus RJ (2002) Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched components. Chem Geol 183(1–4):287–303

    Article  Google Scholar 

  • Kluegel A (2001) Comment on “Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands” by Wulff-Pedersen et al. Contrib Mineral Petrol 141(4):505–510

    Google Scholar 

  • Konstantinovskaya EA (2001) Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia). Tectonophysics 333:75–94

    Article  Google Scholar 

  • Levin V, Park J, Brandon M, Lees J, Peyton V, Gordeev E, Ozerov A (2002) Crust and upper mantle of Kamchatka from teleseismic receiver functions. Tectonophysics 358(1–4):233–265

    Article  Google Scholar 

  • Manea VC, Manea M, Kostoglodov V, Sewell G (2005) Thermal models, magma transport and velocity anomaly estimation beneath southern Kamchatka. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Geological Society of America Special Publications Paper 388, Boulder, pp 517–536

  • Maury RC, Defant MJ, Joron J-L (1992) Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature 360:661–663

    Article  Google Scholar 

  • Nakamura E, Campbell IH, Sun S-S (1985) The influence of subduction processes on the geochemistry of Japanese alkaline basalts. Nature 316:55–58

    Article  Google Scholar 

  • Neumann E-R, Wulff-Pedersen E (1997) The origin of highly silicic glass in mantle xenoliths from the Canary Islands. J Petrol 38(11):1513–1539

    Article  Google Scholar 

  • Pogge von Strandmann PAE, Elliott T, Marschall HR, Coath C, Lai Y-J, Jeffcoate A, Ionov DA (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta (in press)

  • Portnyagin MV, Plechov PY, Matveev SV, Osipenko AB, Mironov NL (2005) Petrology of avachites, high-magnesian basalts of Avachinsky volcano, Kamchatka: I. General characteristics and composition of rocks and minerals. Petrologiya 13(2):99–121

    Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255(1–2):53–69

    Article  Google Scholar 

  • Schiano P (2003) Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Sci Rev 63(1–2):121–144

    Article  Google Scholar 

  • Schiano P, Bourdon B (1999) On the preservation of mantle information in ultramafic nodules: glass inclusions within minerals versus interstitial glasses. Earth Planet Sci Lett 169(1–2):173–188

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Weis D, Mattielli N (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: Implications for metasomatism in the oceanic upper mantle. Earth Planet Sci Lett 123:167–178

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Maury RC, Jochum KP, Hofman AW (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationships with erupted arc lavas. Nature 377:595–600. doi:10.1038/377595a0

    Article  Google Scholar 

  • Schiano P, Bourdon B, Clocchiatti R, Massare D, Varela ME, Bottinga Y (1998) Low-degree partial melting trends recorded in upper mantle minerals. Earth Planet Sci Lett 160:537–550

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Bourdon B, Burton KW, Thellier B (2000) The composition of melt inclusions in minerals at the garnet–spinel transition zone. Earth Planet Sci Lett 174(3–4):375–383

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Boivin P, Medard E (2004) The nature of melt inclusions inside minerals in an ultramafic cumulate from Adak volcanic center, Aleutian arc: implications for the origin of high-Al basalts. Chem Geol 203(1–2):169–179

    Article  Google Scholar 

  • Shimizu K, Komiya T, Hirose K, Shimizu N, Maruyama S (2001) Cr-spinel, an excellent micro-container for retaining primitive melts—implications for a hydrous plume origin for komatiites. Earth Planet Sci Lett 189(3–4):177–188

    Article  Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Article  Google Scholar 

  • Soustelle V, Tommasi A (2010) Seismic properties of the supra-subduction mantle: constraints from peridotite xenoliths from the Avacha volcano, southern Kamchatka. Geophys Res Lett 37(13):L13307

    Article  Google Scholar 

  • Soustelle V, Tommasi A, Demouchy S, Ionov DA (2010) Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. J Petrol 51(1–2):363–394

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1012. doi:1010.1029/2001RG000108

    Article  Google Scholar 

  • van Keken PE (2003) The structure and dynamics of the mantle wedge. Earth Planet Sci Lett 215(3–4):323–338

    Article  Google Scholar 

  • Vidal P, Dupuy C, Maury R, Richard M (1989) Mantle metasomatism above subduction zones: trace-element and radiogenic isotope characteristics of peridotite xenoliths from Batan Island (Philippines). Geology 17:1115–1118

    Article  Google Scholar 

  • Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259(1–2):119–133

    Article  Google Scholar 

  • Widom E, Kepezhinskas P, Defant MJ (2003) The nature of metasomatism in the sub-arc mantle wedge: evidence from Re-Os isotopes in Kamchatka peridotite xenoliths. Chem Geol 196(1–4):283–306

    Article  Google Scholar 

Download references

Acknowledgments

V. D. Scherbakov designed and assembled the heating stage used in this work. Analytical and technical assistance was provided by C. Alboussière and V. O. Yapaskurt. DAI acknowledges a PNP grant from Institut National de Sciences de l’Univers (INSU—CNRS, France) in 2010. We appreciate advice from V. Kamenetsky, constructive reviews by T. Churikova and A. Klügel and editorial handling by J. Hoefs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri A. Ionov.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionov, D.A., Bénard, A. & Plechov, P.Y. Melt evolution in subarc mantle: evidence from heating experiments on spinel-hosted melt inclusions in peridotite xenoliths from the andesitic Avacha volcano (Kamchatka, Russia). Contrib Mineral Petrol 162, 1159–1174 (2011). https://doi.org/10.1007/s00410-011-0645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0645-0

Keywords

Navigation