Skip to main content
Log in

Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Harzburgitic xenoliths cut by pyroxenite veins from Avachinsky volcano, Kamchatka, are derived from the sub-arc mantle and record element transfer from the slab to the arc. Olivine and orthopyroxene in the harzburgites have Li isotopic compositions (δ7Li = +2.8 to +5.6) comparable to estimates of the upper mantle (δ7Li ~ +4 ± 2). The pyroxenite veins, which represent modal metasomatism and may therefore provide information about the metasomatic agent, have mantle-normalized trace element characteristics that suggest overprinting of their mantle source by an aqueous, slab-derived fluid. These include relative enrichments of Pb over Ce, U over Th and Sr over Nd. Li is enriched relative to the HREE, and ortho- and clinopyroxene from the veins are in Li elemental and isotopic equilibrium with each other and the surrounding harzburgite. Vein samples (δ7Li = +3.0 to +5.0) do not record a significant slab-derived δ7Li signature. These observations can be reconciled if slab Li diffusively re-equilibrates in the mantle wedge. Modeling demonstrates that Li equilibration of small (1–2 cm width) veins or melt conduits is achieved at mantle wedge temperatures within 101–105 years. We conclude that strongly fractionated Li isotopic signatures cannot be sustained for long periods in the sub-arc mantle, at least at shallow (<70 km) depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abers G, van Keken PE, Kneller EA, Ferris A, Stachnik JC (2006) The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet Sci Lett 241:387–397. doi:10.1016/j.epsl.2005.11.055

    Google Scholar 

  • Adam J, Green DH (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152:1–17. doi:10.1007/s00410-006-0085-4

    Google Scholar 

  • Agostini S, Ryan JG, Tonarini S, Innocenti F (2008) Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth Planet Sci Lett 272:139–147. doi:10.1016/j.epsl.2008.04.032

    Google Scholar 

  • Arai S, Ishimaru S (2008) Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. J Petrol 49:665–695. doi:10.1093/petrology/egm069

    Google Scholar 

  • Arai S, Ishimaru S, Okrugin VM (2003) Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: implication for metasomatic agent. Isl Arc 12:233–246. doi:10.1046/j.1440-1738.2003.00392.x

    Google Scholar 

  • Aulbach S, Rudnick RL (2009) Origins of non-equilibrium lithium isotopic fractionation in xenolithic peridotite minerals: examples from Tanzania. Chem Geol 258:17–27. doi:10.1016/j.chemgeo.2008.07.015

    Google Scholar 

  • Aulbach S, Rudnick RL, McDonough WF (2008) Li-Sr-Nd isotope signatures of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian Craton (Labait). Contrib Mineral Petrol 155:79–92. doi:10.1007/s00410-007-0226-4

    Google Scholar 

  • Bali E, Falus G, Szabó C, Peate DW, Hidas K, Török K, Ntaflos T (2006) Remnants of boninitic melts in the upper mantle beneath the central Pannonian Basin? Mineral Petrol 90:51–72. doi:10.1007/s00710-006-0167-z

    Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40. doi:10.1007/BF00311183

    Google Scholar 

  • Beck P, Chaussidon M, Barrat JA, Gillet P, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825. doi:10.1016/j.gca.2006.07.025

    Google Scholar 

  • Benton LD, Ryan JG, Savov IP (2004) Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: insights into the mechanics of slab-mantle exchange during subduction. Geochem Geophys Geosyst 5(8):Q08J12. doi:10.1029/2004GC000708

    Google Scholar 

  • Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85. doi:10.1016/S0009-2541(99)00164-3

    Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397. doi:10.1016/S0012-821X(03)00129-8

    Google Scholar 

  • Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79. doi:10.1016/j.chemgeo.2004.08.004

    Google Scholar 

  • Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Braitseva OA, Bazanova LI, Melekestsev IV, Sulerzhitskiy LD (1998) Large Holocene eruptions of Avacha volcano, Kamchatka (7200–3500 14C years b.p.). Volcanol Seismol 20:1–27

    Google Scholar 

  • Brenan JM, Shaw HF, Phinney DL, Ryerson FJ (1995) Experimental evidence for the origin of lead enrichment in convergent-margin magmas. Nature 378:54–56. doi:10.1038/378054a0

    Google Scholar 

  • Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998a) Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141. doi:10.1016/S0016-7037(98)00131-8

    Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998b) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347. doi:10.1016/S0016-7037(98)00224-5

    Google Scholar 

  • Brey GP, Köhler T (1990) Geothermometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Bryant JA, Yogodzinski GM, Churikova TG (2007) Melt-mantle interaction beneath the Kamchatka arc: evidence from ultramafic xenoliths from Shiveluch volcano. Geochem Geophys Geosyst 8(4):Q04007. doi:10.1029/2006GC001443

    Google Scholar 

  • Chan L-H, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau Volcano. Geochem Geophys Geosyst 4(3):8707. doi:10.1029/2002GC000365

    Google Scholar 

  • Chan L-H, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160. doi:10.1016/0012-821X(92)90067-6

    Google Scholar 

  • Chan L-H, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201. doi:10.1016/S0012-821X(02)00707-0

    Google Scholar 

  • Chan L-H, Leeman WP, Plank T (2006a) Lithium isotopic composition of marine sediments. Geochem Geophys Geosyst 7(6):Q06005. doi:10.1029/2005GC001202

    Google Scholar 

  • Chan L-H, Savov IP, Ryan JG (2006b) Lithium isotope study of peridotite-slab fluid interactions in the Mariana forearc mantle wedge. EOS Trans AGU 87(36). Jt. Assemb. Suppl. Abstract V43A-03

  • Condie KC, Cox J, O’Reilly SY, Griffin WL, Kerrich R (2004) Distribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the southwestern United States: the role of grain-boundary phases. Geochim Cosmochim Acta 68:3919–3942. doi:10.1016/j.gca.2004.03.025

    Google Scholar 

  • Coogan LA, Kasemann SA, Chakraborty S (2005) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 240:415–424. doi:10.1016/j.epsl.2005.09.020

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford, p 414

    Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76. doi:10.1007/BF00373711

    Google Scholar 

  • Dick HJB, Natland JH (1996) Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In: Mével C, Gillis KM, Allan JF, Meyer PS (eds) Proceedings of the ocean drilling program, scientific results, vol 147, pp 103–134

  • Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schönberg D, Grassineau N (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmochim Acta 71:452–480. doi:10.1016/j.gca.2006.09.018

    Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser-ablation ICP-MS study. Earth Planet Sci Lett 154:53–71. doi:10.1016/S0012-821X(97)00195-7

    Google Scholar 

  • Eiler JM, McInnes B, Valley JW, Graham CM, Stolper EM (1998) Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393:777–781. doi:10.1038/31679

    Google Scholar 

  • Eiler J, Schiano P, Valley JW, Kita NT, Stolper E (2007) Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst 8(9):Q09012. doi:10.1029/2006GC001503

    Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory. Geophysical monograph, vol 138. American Geophysical Union, Washington DC, pp 23–45

  • Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245. doi:10.1016/S0012-821X(04)00096-2

    Google Scholar 

  • Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443:565–568. doi:10.1038/nature05144

    Google Scholar 

  • Ernst WG (1999) Hornblende, the continent maker—evolution of H2O during circum-Pacific subduction versus continental collision. Geology 27:675–678. doi:10.1130/0091-7613(1999)027<0675:HTCMEO>2.3.CO;2

    Google Scholar 

  • Falloon TJ, Danyushevshy LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283. doi:10.1093/petrology/41.2.257

    Google Scholar 

  • Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Mineral Petrol 145:391–405. doi:10.1007/s00410-003-0447-0

    Google Scholar 

  • Gao Y, Casey JF, Snow JE (2008) Isotopic fractionation of Li during cooling of mantle peridotite from Gakkel Ridge. EOS Trans AGU 89(53). Fall Meet. Suppl. Abstract V32A-03

  • Giletti BJ, Shanahan TM (1997) Alkali diffusion in plagioclase feldspar. Chem Geol 139:3–20. doi:10.1016/S0009-2541(97)00026-0

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, p 390

    Google Scholar 

  • Glaser SM, Foley SF, Gunther D (1999) Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos 48:263–285. doi:10.1016/S0024-4937(99)00032-8

    Google Scholar 

  • Gorbatov A, Kostoglodov V, Suarez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res 102:17883–17898. doi:10.1029/96JB03491

    Google Scholar 

  • Green TH, Adam J (2003) Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650–700°C. Eur J Mineral 15:815–830. doi:10.1127/0935-1221/2003/0015-0815

    Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos 53:165–187. doi:10.1016/S0024-4937(00)00023-2

    Google Scholar 

  • Halama R, McDonough WF, Rudnick RL, Keller J, Klaudius J (2007) The Li isotopic composition of Oldoinyo Lengai: nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis. Earth Planet Sci Lett 254:77–89. doi:10.1016/j.epsl.2006.11.022

    Google Scholar 

  • Halama R, McDonough WF, Rudnick RL, Bell K (2008) Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth Planet Sci Lett 265:726–742. doi:10.1016/j.epsl.2007.11.007

    Google Scholar 

  • Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta 63:4059–4080. doi:10.1016/S0016-7037(99)00309-9

    Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions in arc magmas. Annu Rev Earth Planet Sci 21:175–204

    Google Scholar 

  • Heinrich W, Besch T (1992) Thermal history of the upper mantle beneath a young back-arc extensional zone: ultramafic xenoliths from San Luis Potosí, Central Mexico. Contrib Mineral Petrol 111:126–142. doi:10.1007/BF00296583

    Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace element as indicators of the extent of melting in mid-ocean ridge peridotites. Nature 410:677–681. doi:10.1038/35070546

    Google Scholar 

  • Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46:2099–2115. doi:10.1016/0016-7037(82)90188-0

    Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature 427:699–703. doi:10.1038/nature02259

    Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson RW (ed) Treatise on geochemistry, vol 2: the mantle and core. Elsevier-Pergamon, Oxford, pp 61–101

  • Ionov DA, Hofmann AW (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131:341–356. doi:10.1016/0012-821X(95)00037-D

    Google Scholar 

  • Ionov DA, Seitz H-M (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 266:316–331. doi:10.1016/j.epsl.2007.11.020

    Google Scholar 

  • Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:2219–2259. doi:10.1093/petrology/43.12.2219

    Google Scholar 

  • Ishimaru S, Arai S (2008a) Nickel enrichment in mantle olivine beneath a volcanic front. Contrib Mineral Petrol 156:119–131. doi:10.1007/s00410-007-0277-6

    Google Scholar 

  • Ishimaru S, Arai S (2008b) Calcic amphiboles in peridotite xenoliths from Avacha volcano, Kamchatka, and their implications for metasomatic conditions in the mantle wedge. In: Coltorti M, Grégoire M (eds) Metasomatism in continental and oceanic lithospheric mantle. Geol Soc Lond Spec Publ 293:35–55

  • Ishimaru S, Arai S (2008c) Highly silicic glasses in peridotite xenoliths from Avacha volcano, Kamchatka arc; implications for melting and metasomatism within the sub-arc mantle. Lithos. doi:10.1016/j.lithos.2008.07.005

  • Ishimaru S, Arai S, Ishida Y, Shirasaka M, Okrugin VM (2007) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, Southern Kamchatka. J Petrol 48:395–433. doi:10.1093/petrology/egl065

    Google Scholar 

  • James RH, Palmer MR (2000) The lithium isotope composition of international rock standards. Chem Geol 166:319–326. doi:10.1016/S0009-2541(99)00217-X

    Google Scholar 

  • Jeffcoate AB, Elliott T, Thomas A, Bouman C (2004) Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostand Geoanal Res 28:161–172. doi:10.1111/j.1751-908X.2004.tb01053.x

    Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218. doi:10.1016/j.gca.2006.06.1611

    Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the Oceanic Upper Mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678. doi:10.1029/JB095iB03p02661

    Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406. doi:10.1016/S0012-821X(98)00233-7

    Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2003) One view of the Geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3: the crust. Elsevier-Pergamon, Oxford, pp 593–659

  • Kelley KA, Plank T, Ludden J, Staudigel H (2003) Composition of altered oceanic crust at ODP sites 801 and 1149. Geochem Geophys Geosyst 4(6):8910. doi:10.1029/2002GC000435

    Google Scholar 

  • Kepezhinskas P, Defant MJ (1996) Contrasting styles of mantle metasomatism above subduction zones: constraints from ultramafic xenoliths in Kamchatka. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. Geophys Monogr 96:307–314

  • Kepezhinskas P, Defant MJ (2001) Nonchondritic Pt/Pd ratios in arc mantle xenoliths: evidence for platinum enrichment in depleted island-arc mantle sources. Geology 29:851–854. doi:10.1130/0091-7613(2001)029<0851:NPPRIA>2.0.CO;2

    Google Scholar 

  • Kepezhinskas P, Defant MJ, Drummond MS (1995) Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the North Kamchatka Arc. J Petrol 36:1505–1527

    Google Scholar 

  • Kepezhinskas P, Defant MJ, Drummond MS (1996) Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim Cosmochim Acta 60:1217–1229. doi:10.1016/0016-7037(96)00001-4

    Google Scholar 

  • Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury R, Bellon H (1997) Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta 61:577–600. doi:10.1016/S0016-7037(96)00349-3

    Google Scholar 

  • Kepezhinskas P, Defant MJ, Widom E (2002) Abundance and distribution of PGE and Au in the island-arc mantle: implications for sub-arc metasomatism. Lithos 2002:113–128. doi:10.1016/S0024-4937(01)00073-1

    Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240. doi:10.1038/380237a0

    Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727. doi:10.1038/nature03971

    Google Scholar 

  • Koloskov AV, Puzankov MY, Pirozhkova ES (2001) Ultramafic inclusions in island arc basaltoids: the problem of the composition and genesis of the transitional “crust–mantle mixture” layer in island arc systems. In: Geodinamika i vulkanizm Kurilo-Kamchatskoi ostrovoduzhnoi sistemy (Geodynamics and Volcanism of the Kuril–Kamchatka Island Arc System), IVGiG DVO RAN, Petropavlovsk-Kamchatskii, pp 123–152

  • Lee C-T, Harbert A, Leeman WP (2007) Extension of lattice strain theory to mineral/mineral rare-earth element partitioning: an approach for assessing disequilibrium and developing internally consistent partition coefficients between olivine, orthopyroxene, clinopyroxene and basaltic melt. Geochim Cosmochim Acta 71:481–496. doi:10.1016/j.gca.2006.09.014

    Google Scholar 

  • Levin V, Park J, Brandon M, Lees J, Peyton V, Gordeev E, Ozerov A (2002) Crust and upper mantle of Kamchatka from teleseismic receiver functions. Tectonophysics 358:233–265. doi:10.1016/S0040-1951(02)00426-2

    Google Scholar 

  • Luhr JF, Aranda-Gómez JJ (1997) Mexican peridotite xenoliths and tectonic terranes: correlations among vent location, texture, temperature, pressure, and oxygen fugacity. J Petrol 38:1075–1112. doi:10.1093/petrology/38.8.1075

    Google Scholar 

  • Magna T, Wiechert UH, Halliday AN (2004) Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int J Mass Spectrom 239:67–76. doi:10.1016/j.ijms.2004.09.008

    Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243:336–353. doi:10.1016/j.epsl.2006.01.005

    Google Scholar 

  • Manea VC, Manea M (2007) Thermal models beneath Kamchatka and the Pacific plate rejuvenation from a mantle plume impact. In: Eichelberger J, Izbekov P, Ruppert N, Gordeev E, Lees J (eds) Volcanism and tectonics of the Kamchatka peninsula and adjacent arcs. Geophys Monogr 172:77–90

  • Marks M, Halama R, Wenzel T, Markl G (2004) Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral-melt trace element partitioning. Chem Geol 211:185–215. doi:10.1016/j.chemgeo.2004.06.032

    Google Scholar 

  • Marks M, Rudnick RL, McCammon C, Vennemann TW, Markl G (2007) Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex, South Greenland: evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem Geol 246:207–230. doi:10.1016/j.chemgeo.2007.10.001

    Google Scholar 

  • Marschall HR, Altherr R, Ludwig T, Kalt A, Gméling K, Kasztovszky Z (2006) Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochim Cosmochim Acta 70:4750–4769. doi:10.1016/j.gca.2006.07.006

    Google Scholar 

  • Marschall HR, Pogge von Strandmann PAE, Seitz H-M, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580. doi:10.1016/j.epsl.2007.08.005

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Google Scholar 

  • Münker C, Wörner G, Yogodzinski G, Churikova T (2004) Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas. Earth Planet Sci Lett 224:275–293. doi:10.1016/j.epsl.2004.05.030

    Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  • Nishio Y, Nakai S, Yamamoto J, Sumino H, Matsumoto T, Prikhod’ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261. doi:10.1016/S0012-821X(03)00606-X

    Google Scholar 

  • Nixon PH (1987) Mantle xenoliths. Wiley, New York, p 844

    Google Scholar 

  • Nizkous IV, Sanina IA, Kissling E, Gontovaya LI (2006) Velocity properties of the lithosphere in the ocean-continent transition zone in the Kamchatka region from seismic tomography data. Izvestiya. Phys Solid Earth 42:286–296. doi:10.1134/S1069351306040033

    Google Scholar 

  • O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194. doi:10.1007/BF00636522

    Google Scholar 

  • Osipenko AB (2003) New data on boninite magmatism of Eastern Kamchatka. Dokl Earth Sci 391A:892–895

    Google Scholar 

  • Ottolini L, Le Fèvre B, Vannucci R (2004) Direct assessment of mantle boron and lithium contents and distribution by SIMS analyses of peridotite minerals. Earth Planet Sci Lett 228:19–36. doi:10.1016/j.epsl.2004.09.027

    Google Scholar 

  • Ozawa K (1994) Melting and melt segregation in the mantle wedge above a subduction zone: evidence from the chromite-bearing peridotites of the Miyamori ophiolite complex, northeastern Japan. J Petrol 35:647–678

    Google Scholar 

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621. doi:10.1016/j.epsl.2007.03.023

    Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, vol 2: the mantle and core. Elsevier-Pergamon, Oxford, pp 171–275

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394. doi:10.1016/S0009-2541(97)00150-2

    Google Scholar 

  • Portnyagin M, Hoernle K, Avdeiko G, Hauff F, Werner R, Bindeman I, Uspensky V, Garbe-Schönberg D (2005) Transition from arc to oceanic magmatism at the Kamchatka-Aleutian junction. Geology 33:23–28. doi:10.1130/G20853.1

    Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197–200. doi:10.1038/35065583

    Google Scholar 

  • Qi HP, Taylor PDP, Berglund M, De Bievre P (1997) Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016. Int J Mass Spectrom Ion Process 171:263–268. doi:10.1016/S0168-1176(97)00125-0

    Google Scholar 

  • Ranero CR, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373. doi:10.1038/nature01961

    Google Scholar 

  • Rehkämper M, Hofmann AW (1997) Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett 147:93–106. doi:10.1016/S0012-821X(97)00009-5

    Google Scholar 

  • Renkin ML, Sclater JG (1988) Depth and age in the North Pacific. J Geophys Res 93(B4):2919–2935. doi:10.1029/JB093iB04p02919

    Google Scholar 

  • Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923. doi:10.1016/S0016-7037(03)00174-1

    Google Scholar 

  • Rudnick RL, Ionov D (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid-rock reaction. Earth Planet Sci Lett 256:278–293. doi:10.1016/j.epsl.2007.01.035

    Google Scholar 

  • Rudnick RL, Tomascak PB, Heather BN, Gardner LR (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57. doi:10.1016/j.chemgeo.2004.08.008

    Google Scholar 

  • Ryan JG, Kyle PR (2004) Lithium abundance and lithium isotope variations in mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. Chem Geol 212:125–142. doi:10.1016/j.chemgeo.2004.08.006

    Google Scholar 

  • Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741. doi:10.1016/0016-7037(87)90351-6

    Google Scholar 

  • Saha A, Basu AR, Jacobsen SB, Poreda RJ, Yin Q-Z, Yogodzinski GM (2005) Slab devolatilization and Os and Pb mobility in the mantle wedge of the Kamchatka arc. Earth Planet Sci Lett 236:182–194. doi:10.1016/j.epsl.2005.05.018

    Google Scholar 

  • Savov IP, Ryan JG, Chan L-H, D’Antonio M, Mottl M, Fryer P, Party OLS (2002) Geochemistry of serpentinites from the S. Chamorro Seamount, ODP leg 195, site 1200, Mariana Forearc—implications for recycling at subduction zones. Geochim Cosmochim Acta 66(Suppl 1):A670

    Google Scholar 

  • Savov IP, Ryan JG, D’Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6(4):Q04J15. doi:10.1029/2004GC000777

    Google Scholar 

  • Savov IP, Ryan JG, D’Antonio M, Fryer P (2007) Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc. J Geophys Res 112:B09205. doi:09210.01029/02006JB004749

    Google Scholar 

  • Schmidt MW, Poli S (2003) Generation of mobile components during subduction of oceanic crust In: Rudnick RL (ed) Treatise on geochemistry, vol 3: the crust. Elsevier-Pergamon, Oxford, pp 567–591

  • Schwartz S, Allemand P, Guillot S (2001) Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolite massif. Tectonophysics 342:193–206. doi:10.1016/S0040-1951(01)00162-7

    Google Scholar 

  • Seitz H-M, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64. doi:10.1016/S0009-2541(99)00184-9

    Google Scholar 

  • Seitz H-M, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177. doi:10.1016/j.chemgeo.2004.08.009

    Google Scholar 

  • Seitz H-M, Brey GP, Weyer S, Durali S, Ott U, Münker C, Mezger K (2006) Lithium isotope compositions of Martian and lunar reservoirs. Earth Planet Sci Lett 245:6–18. doi:10.1016/j.epsl.2006.03.007

    Google Scholar 

  • Shang CK, Satir M, Nsifa EN, Liégois J-P, Siebel W, Taubald H (2007) Archaean high-K granitoids produced by remelting of earlier tonalite-trondhjemite-granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon. Int J Earth Sci 96:817–841. doi:10.1007/s00531-006-0141-3

    Google Scholar 

  • Singer BS, Jicha BR, Leeman WP, Rogers NW, Thirlwall MF, Ryan J, Nicolaysen K (2007) Along-strike trace element and isotopic variation in Aleutian Island arc basalt: subduction melts sediments and dehydrates serpentine. J Geophys Res 112:B06206. doi:06210.01029/02006JB004897

    Google Scholar 

  • Stalder R, Foley SF, Brey GP, Horn I (1998) Mineral-aqueous fluid partitioning of trace elements at 900-1200°C and 3.0–5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim Cosmochim Acta 62:1781–1801. doi:10.1016/S0016-7037(98)00101-X

    Google Scholar 

  • Stern RJ, Morris J, Bloomer SH, Hawkins JW (1991) The source of the subduction component in convergent margin magmas: trace element and radiogenic isotope evidence from Eocene boninites, Mariana forearc. Geochim Cosmochim Acta 55:1467–1481. doi:10.1016/0016-7037(91)90321-U

    Google Scholar 

  • Straub SM, Layne GD (2003) Decoupling of fluids and fluid-mobile elements during shallow subduction: evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front. Geochem Geophys Geosyst 4(7):9003. doi:10.1029/2002GC000349

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Lond Spec Publ 42:313–345

  • Tamura A, Arai S (2006) Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90:43–56. doi:10.1016/j.lithos.2005.12.012

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178. doi:10.1016/j.gca.2004.03.031

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710. doi:10.1016/j.epsl.2006.01.036

    Google Scholar 

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910. doi:10.1016/S0016-7037(98)00318-4

    Google Scholar 

  • Tomascak PB, Ryan JG, Defant MJ (2000) Lithium isotope evidence for light element decoupling in the Panama subarc mantle. Geology 28:507–510. doi:10.1130/0091-7613(2000)28<507:LIEFLE>2.0.CO;2

    Google Scholar 

  • Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238. doi:10.1016/S0012-821X(01)00614-8

    Google Scholar 

  • Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637. doi:10.1016/j.gca.2007.12.021

    Google Scholar 

  • Turner S, McDermott F, Hawkesworth C, Kepezhinskas P (1998) A U-series study of lavas from Kamchatka and the Aleutians: constraints on source composition and melting processes. Contrib Mineral Petrol 133:217–234. doi:10.1007/s004100050449

    Google Scholar 

  • van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703

    Google Scholar 

  • Widom E, Kepezhinskas P, Defant MJ (2003) The nature of metasomatism in the sub-arc mantle wedge: evidence from Re-Os isotopes in Kamchatka peridotite xenoliths. Chem Geol 196:283–306. doi:10.1016/S0009-2541(02)00417-5

    Google Scholar 

  • Wilson AH (1982) The geology of the Great ‘Dyke’, Zimbabwe: the ultramafic rocks. J Petrol 23:240–292

    Google Scholar 

  • Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation on lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120. doi:10.1007/s00410-005-0049-0

    Google Scholar 

  • Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290. doi:10.1016/j.chemgeo.2006.12.001

    Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290. doi:10.1016/S0012-821X(03)00035-9

    Google Scholar 

  • Zipfel J, Wörner G (1992) Four- and five-phase peridotites from a continental rift system: evidence for upper mantle uplift and cooling at the Ross Sea margin (Antarctica). Contrib Mineral Petrol 111:24–36. doi:10.1007/BF00296575

    Google Scholar 

Download references

Acknowledgments

The help of Richard Ash with laser ICP-MS analyses is greatly appreciated. We also thank Mary Horan and Timothy Mock for guidance during preparation and acquisition of the Sr isotope data and Heiner Taubald for help with the whole-rock major element analyses. Phil Piccoli, Christos Hadidiacos and Barbara Mader assisted with microprobe measurements. Jeffrey G. Ryan and Steve Shirey contributed to the development of some of the ideas expressed in this contribution, and Jessica Warren expertly assisted in assessing comparative data from abyssal peridotites. We are grateful to Paul Tomascak and Shoji Arai for constructive reviews and to Jochen Hoefs for editorial handling. R. H. acknowledges a Feodor-Lynen fellowship from the Alexander-von-Humboldt Foundation during his time at the University of Maryland and I. P. S. acknowledges fellowship support from the Department of Terrestrial Magnetism of the Carnegie Institution of Washington. This work was supported by NSF grant EAR 0609689 to RLR and WFM. This publication is contribution no. 159 of the Sonderforschungsbereich 574 at Kiel University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ralf Halama or Ivan P. Savov.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary tables (DOC 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halama, R., Savov, I.P., Rudnick, R.L. et al. Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Mineral Petrol 158, 197–222 (2009). https://doi.org/10.1007/s00410-009-0378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0378-5

Keywords

Navigation