Skip to main content
Log in

Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): application to composition and evolution of mantle melts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Clinopyroxene megacrysts from young melanephelinitic lavas were divided into Cr-rich and Cr-poor suites. Sr, Nd, and Pb isotopic ratios of leached megacrysts and host lava are indistinguishable from each other and indicate a depleted source. Host lavas do not display chemical evidence for significant fractional crystallization, which is required to explain the compositional range of the megacrysts. This rules out a simple cognate genetic relationship between the two, and strictly defines megacrysts as xenocrysts. The well-defined correlations of trace elements with the Mg-numbers in the megacrysts are interpreted as the result of extensive fractional/equilibrium crystallization of magma over a large temperature range at near isobaric condition in the upper mantle. Trace element variations in megacrysts are consistent with fractional crystallization of clinopyroxene alone for the Cr-rich suite, and clinopyroxene + garnet for the Cr-poor suite from at least two bathes of related melts. Megacrysts parent magma might represent mantle melts, which were never erupted in their initial composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam J (1990) The geochemistry and experimental petrology of sodic alkaline basalts from Oatlands, Tasmania. J Petrol 31:1201–1223

    Google Scholar 

  • Akinin VV, Apt JE (1994) Enmelen Volcanoes, Chukchi Peninsula: petrology of alkaline lavas and deep seated inclusions (in Russian). NEISRI FEB RAS Magadan, 97 p

  • Akinin VV, Roden MF, Francis DM, Apt JE, Moll-Stalcup E (1997) Compositional and thermal state of the upper mantle beneath the Bering Sea Basalt Province: evidence from the Chukchi Peninsula of Russia. Can J Earth Sci 34:789–800

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe–Mg–Mn–Ti oxides: Fe–Ti oxides. Am Mineral 79:714–726

    Google Scholar 

  • Andersen T, Griffin WL, O’Reilly SY (1987) Primary sulphide melt inclusions in mantle derived megacrysts and pyroxenites. Lithos 20:279–294

    Google Scholar 

  • Anderson AT (1968) Oxidation of the La Blanche Lake titaniferous magnetite deposit, QC. J Geol 76:528–547

    Article  Google Scholar 

  • Aoki K, Shiba I (1973) Pyroxene from lherzolite inclusions of Itinomegata, Japan. Lithos 6:41–51

    Article  Google Scholar 

  • Bacon CR, Carmichael ISE (1973) Stages in the PT path of ascending basalt magma: an example from Quintin, Baja California. Contrib Mineral Petrol 41:1–22

    Article  Google Scholar 

  • Binns RA (1969) High-pressure megacrysts in basanitic lavas near Armidale, New South Wales. Am J Sci 267A:33–49

    Google Scholar 

  • Binns RA, Duggan MB, Wilkinson JWG, Kalocsai GIZ (1970) High pressure megacrysts in alkaline lavas from northeastern New South Wales. Am J Sci 269:132–168

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Bodinier J-L, Fabries J, Lorand J-P, Dostal J, Depuz C (1987) Geochemistry of amphibole pyroxenite veins from Lherz and Freychinede ultramafic bodies (Ariege French Pyrenees). Bull Mineral 110:345–358

    Google Scholar 

  • Brenan JM, Watson EB (1991) Partitioning of trace elements between carbonate melt and clinopyroxene and olivine at mantle PT conditions. Geochim Cosmochim Acta 55:2203–2214

    Article  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Mineral–aqueous fluid partitioning of trace elements at 900°C and 2.0GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253

    Article  Google Scholar 

  • Bultitude RJ, Green DH (1971) Experimental study of crystal–liquid relationships at high pressure in olivine nephelinite and basanite compositions. J Petrol 12:121–147

    Google Scholar 

  • Canil D, Fedortchouck Y (2000) Clinopyroxene–liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. J Geophys Res 105:26003–26016

    Article  Google Scholar 

  • Carmichael ISE (1967) The iron–titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 14:36–64

    Article  Google Scholar 

  • Clague DA, Frey FA (1982) Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: implications for the oceanic mantle below Hawaii. J Petrol 23:447–504

    Google Scholar 

  • Davis AS, Gunn SH, Gray L-B, Marlow MS, Wong FL (1993) Petrology and isotopic composition of Quaternary basanites dredged from the Bering Sea continental margin near Navarin Basin. Can J Earth Sci 30:975–984

    Article  Google Scholar 

  • Dobosi G, Jenner GA (1999) Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nograd volcanic province, north Hungary: a study by laser ablation microprobe-inductively coupled plasma-mass spectrometry. Lithos 46:731–749

    Article  Google Scholar 

  • Esin SV (1993) Injection magmatism in upper mantle: test of empirical clinopyroxene geothermobarometer. Siberian Branch of RAS, United Institute of Geology, Geophysics and Mineralogy, Novosibirsk, 121 p

    Google Scholar 

  • Forsythe LM, Nielson RL, Fisk MR (1994) High-field-strength element partitioning between pyroxenen and basaltic to dacitic magmas. Chem Geol 117:107–125

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1995) Partitioning of rare earth elements between clinopyroxene and silicate melt: crystal-chemical controls. Geochim Cosmochim Acta 59:1951–1962

    Article  Google Scholar 

  • Gallahan WE, Nielsen RL (1992) The partitioning of Sc, Y, and rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere. Geochim Cosmochim Acta 56:2387–2404

    Article  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by emphemeral carbonatite melts. Nature 336:459–462

    Article  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–75GPa and 1,080–1,200°C. Lithos 53:165–187

    Article  Google Scholar 

  • Hack PJ, Nielsen RL, Johnston AD (1994) Experimentally determined rare-earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20kbar. Chem Geol 117:89–105

    Article  Google Scholar 

  • Hart SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90:273–296

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  Google Scholar 

  • Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215

    Article  Google Scholar 

  • Huebner JS (1971) Buffering techniques for hydrostatic systems at elevated pressures. In: Ulmer GC (ed) Research techniques for high pressure and high temperature. Springer, Berlin Heidelberg New York, pp 123–177

    Google Scholar 

  • Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1221

    Article  Google Scholar 

  • Jakob WRO (1977) Geochemical aspects of the megacrysts suite from the Monastery kimberlite pipe. M.Sc. thesis, University of Cape Town, p 81

  • Jenner GA, Foley SF, Jackson SE, Green TH, Fryer BJ, Longerich HP (1994) Determination of partition coefficients for trace elements in high pressure–temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochim Cosmochim Acta 58:5099–5103

    Google Scholar 

  • Johnson KTM, Dick HJB (1992) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Article  Google Scholar 

  • Klemme S, Van der Laan SR, Foley SF, Gunther D (1995) Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett 133:439–448

    Article  Google Scholar 

  • Klemperer SL, Miller EL, Grantz A, Scholl DW, BCWG (2002) Crustal structure of the Bering and Chukchi shelves: deep seismic reflection profiles across the North American continent between Alaska and Russia. In: Miller EL, Grantz A, Klemperer SL (eds) Tectonic evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and adjacent landmasses. GSA Spec Pap 360, Boulder, CO, pp 1–24

  • Kovalenko VI, Solovova IP, Naumov VB, Ryabchikov ID, Ionov DA, Tzepin AI (1986) The mantle mineral-formation with participation of carbon dioxide-sulfide-silicate fluid. Geochimiya 3:289–303

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL, Gill JB, Wiliams Q (1994) Compositional controls on the partitioning of U, Th, Ba, Sr and Zr between clinopyroxene and haplobasaltic melts: implications for uranium series disequilibria in basalts. Earth Planet Sci Lett 128:407–423

    Article  Google Scholar 

  • Mackey KG, Fujita K, Gunbina LV, Kovalev VN, Imaev VS, Koz’min BM, Imaeva LP (1997) Seismicity of the Bering Strait region: evidence for a Bering block. Geology 25:979–982

    Article  Google Scholar 

  • McGuire AV, Dyar D, Ward KA (1989) Neglected Fe3+/Fe2+ ratios—a study of Fe3+ content of megacrysts from alkali basalts. Geology 17:687–690

    Article  Google Scholar 

  • Menzies M, Murthy VR (1980) Mantle metasomatism as a precursor to the genesis of alkaline magmas—isotope evidence. Am J Sci 280A:622–638

    Google Scholar 

  • Moll-Stalcup EJ (1994) Latest Cretaceous and Cenozoic magmatism in mainland Alaska. In: Plafker G, Berg HC (eds) The geology of North America, vol G-1. GSA, Boulder, CO, pp 589–620

    Google Scholar 

  • Mukasa SB, Andronikov AV (2002) Lithospheric mantle evolution beneath the Bering Sea volcanic province: an isotopic and trace element study of peridotite xenoliths and their host lavas. EOS Trans AGU Fall Meet 83:F1435

    Google Scholar 

  • Nagasava H (1966) Trace element partition coefficient in ionic crystals. Science 152:767–769

    Article  Google Scholar 

  • Neal CR (1995) The relationship between megacrysts and their host magma and identification of the mantle source region. EOS Trans 76:P664

    Google Scholar 

  • Nielsen RL, Drake MI (1979) Pyroxene–melt equilibria. Geochim Cosmochim Acta 43:1259–1272

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks Part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:122–135

    Article  Google Scholar 

  • Papike JJ, Cameron KL, Baldwin K (1974) Amphiboles and pyroxenes, characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Geol Soc Am Abstr 6:1053–1054

    Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New York, pp 31–75

    Google Scholar 

  • Putirka K (1999) Clinopyroxene + liquid equilibria to 100kbar and 2,450K. Contrib Mineral Petrol 135:151–163

    Article  Google Scholar 

  • Righter K, Carmichael ISE (1993) Mega-xenocrysts in alkali olivine basalts: fragments of disrupted mantle assemblage. Am Mineral 78:1230–1245

    Google Scholar 

  • Roden MF, Francis DM, Frey FA (1995) Upper mantle composition beneath the Eastern Bering Sea. In: Simakov KV, Thurston DK (eds) Proceedings of the International Conference on Arctic Margins. NESC FEB RAS, Magadan, pp 147–152

  • Rudnick RL, McDonough WF, Chappel BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Schneider ME, Eggler DH (1986) Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochim Cosmochim Acta 50:711–724

    Article  Google Scholar 

  • Schulze DJ (1987) Megacrysts from alkalic rocks. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 433–452

    Google Scholar 

  • Schulze DJ, Valley JR, Bell DR, Spicuzza MJ (2001) Oxygen isotope variations in Cr-poor megacrysts from kimberlite. Geochim Cosmochim Acta 65:4375–4384

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shaw CSJ, Eyzaguirre J (2000) Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. Lithos 50:75–95

    Article  Google Scholar 

  • Shimizu N, Hart SR (1982) Applications of the ion microprobe to geochemistry and cosmochemistry. Ann Rev Earth Planet Sci 10:483–526

    Article  Google Scholar 

  • Skulski T, Minarik W, Watson EB (1994) High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem Geol 117:127–147

    Article  Google Scholar 

  • Sobolev AV, Migdisov AA, Portnyagin MV (1996) Incompatible elements partitioning between clinopyroxene and basaltic melt based on the study of melt inclusions in minerals from Troodos, Cyprus. Petrology 4:307–317

    Google Scholar 

  • Stalder R, Foley SF, Brey GP, Horn I (1998) Mineral-aqueous fluid partitioning of trace elements at 900–1,200°C and 3.0–5.7GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim Cosmochim Acta 62:1781–1801

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Sounders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Lond Spec Publ 42:313–345

  • Van Westrenen W, Blundy DJ, Wood BJ (2000) Effect of Fe2+ on garnet–melt trace element partitioning: experiments in FCMAS and quantification of crystal-chemical controls in natural systems. Lithos 53:189–201

    Article  Google Scholar 

  • Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Wood BJ, Blundy JD (2001) The effect of cation charge on crystal–melt partitioning of trace elements. Earth Planet Sci Lett 188:59–71

    Article  Google Scholar 

  • Wood DA, Joron JL, Treuil M, Norry M, Tarney J (1979) Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib Mineral Petrol 70:319–339

    Article  Google Scholar 

  • Zack T, Foley SF, Jenner GA (1996) A consistent partition coefficient set of 21 trace elements for clinopyroxene, amphibole and garnet through laser ablation microprobe analysis of garnet pyroxenites from Kakanui, New Zealand. J Conf Abs, Camb 1:691

    Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgements

VVA acknowledges the support of Institute of Petrology, Vienna, with travel and microprobe work. We greatly appreciate the informal review and help of L. Danyushevsky. The reviews of M. Roden and an anonymous person, as well as suggestions of I. Carmichael greatly improved the manuscript. This research was supported in part by Russian Foundation of Basic Research (grant 96-05-66124, 01-05-65453 to VVA) and in part by the Federal Ministry for Education, Science and Culture (Pr. Nr. G7 45.482/1-VII/B/8/2000, PI. W. Richter).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav V. Akinin.

Additional information

Communicated by I. Carmichael

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinin, V.V., Sobolev, A.V., Ntaflos, T. et al. Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): application to composition and evolution of mantle melts. Contrib Mineral Petrol 150, 85–101 (2005). https://doi.org/10.1007/s00410-005-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0007-x

Keywords

Navigation