Skip to main content

Advertisement

Log in

Major element composition of the lithospheric mantle under the North Atlantic craton: Evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The composition and thermal state of the lithospheric mantle under the North Atlantic craton was investigated using a suite of peridotite xenoliths from the diamond-bearing Sarfartoq kimberlite dike swarm of southwestern Greenland. Elevated olivine and whole-rock Mg# (>0.9) attest to the refractory nature of the Sarfartoq mantle showing comparable degrees of depletion to other cratonic roots. Modal analyses indicate that the Sarfartoq mantle is not typified by the orthopyroxene enrichment observed in the Kaapvaal root, but shows more affinity with the Canadian Arctic (Somerset Island), Tanzania, and East Greenland (Wiedemann Fjord) peridotites. The Sarfartoq peridotites have equilibrated at temperatures and pressures ranging from 660 to 1,280 °C and from 2.2 to 6.3 GPa, and define a relatively low mantle heat flow of 13.2±1 mW/m2. In addition, the lithospheric mantle underneath the Sarfartoq area is compositionally layered as follows: (1) an internally stratified upper layer (70 to 180 km) consisting of coarse, un-deformed, refractory garnet-bearing and garnet-free peridotites and, (2) a lower layer (180 to 225 km) characterized by fertile, CPX-bearing, porphyroclastic garnet lherzolites. The stratification observed in the upper refractory harzburgite layer (70–180 km) is reflected by an increase in fertility (e.g., decrease in olivine abundance and forsterite content) with depth. The sharp nature of the boundary between the upper and lower layers may indicate multistage growth of the lithospheric mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–f.
Fig. 3a–c.
Fig. 4.
Fig. 5.
Fig. 6:
Fig. 7.
Fig. 8.
Fig. 9. a
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships. Review and interpretations. Chem Geol 113:191–204

    CAS  Google Scholar 

  • Bernstein S, Kelemen PB, Brooks CK (1998) Depleted spinel harzburgite xenoliths in tertiary dykes from East Greenland: restites from high degree melting. Earth Planet Sci Lett 154:221–235

    Article  CAS  Google Scholar 

  • Bizzarro M, Simonetti A, Stevenson RK, David J (2002) Hf isotope evidence for a hidden mantle reservoir. Geology 30:771–774

    Article  CAS  Google Scholar 

  • Bizzarro M, Simonetti A, Stevenson RK, Kurszlaukis S (2003) In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser ablation MC-ICP-MS. Geochim Cosmochim Acta 67:289–302

    Article  CAS  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    CAS  Google Scholar 

  • Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. In: Mysen BO (ed) Magmatic processes: physicochemical principles. Geochemical Society Special publication 1. Geochemical Society, Penn State University, pp 13–24

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 182:228–246

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase Lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    CAS  Google Scholar 

  • Chesley JT, Rudnick RL, Lee C-T (1999) Re-Os systematic of mantle xenoliths from the East African rift: age, structure and history of the Tanzanian craton. Geochim Cosmochim Acta 63:1203–1217

    CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. University Press, Oxford, 414 pp

  • Doin MP, Fleitout L (1996) Thermal evolution of the oceanic lithosphere: an alternative view, Earth Planet Sci Lett 142:121–136

    Google Scholar 

  • Ganguly J, Cheng W, Chakraborty S (1998) Cation diffusion determination in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples. Contrib Mineral Petrol 131:171–180

    Article  CAS  Google Scholar 

  • Gaul OF, Griffin WL, O'Reilly SY, Pearson NJ (2000) Mapping olivine composition in the lithospheric mantle. Earth Planet Sci Lett 182:223–235

    Article  CAS  Google Scholar 

  • Griffin WL, Smith D, Boyd FR, Cousens DR, Ryan CG, Sie SH, Suter GF (1989) Trace elements zoning in garnets from sheared mantle xenoliths. Geochim Cosmochim Acta 53:561–567

    CAS  Google Scholar 

  • Griffin WL, Doyle BD, Ryan CG, Pearson NJ, O'Reilly SY, Davies R, Kivi K, Van Achterbergh E, Natapov LM (1999) Layered mantle lithosphere in the Lac de Gras Area, Slave Craton: composition, structure and origin. J Petrol 40:705–727

    Article  CAS  Google Scholar 

  • Gurney JJ, Zweistra P (1995) The interpretation of the major element compositions of mantle minerals in diamond exploration. J Geochem Explor 53:293–309

    Article  CAS  Google Scholar 

  • Hanghøj K, Kelemen P, Berstein S, Blusztajn J, Frei R (2000) Osmium isotopes in the Wiedemann Fjord mantle xenoliths: a unique record of cratonic mantle formation by melt depletion in the Archaean. Geochemistry, Geophysics, Geosystems 2, Paper no 20000GC000085

    Google Scholar 

  • Harte B (1977) Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. J Geol 85:279–288

    Google Scholar 

  • Irvine TN (1965) Chromian spinel as a petrogenetic indicator. Part 1. Theory. Can J Earth Sci 2:648–672

    CAS  Google Scholar 

  • Jaupart C, Mareschal JC (1999) The thermal structure and thickness of continental roots. Lithos 48:93–114

    Article  CAS  Google Scholar 

  • Jaupart C Mareschal JC, Guillou-Frottier L, Davaille A (1998) Heat flow and thickness of the lithosphere in the Canadian Shield. J Geophys Res-Solid Earth 103:15269–15286

    Google Scholar 

  • Jordan TH (1973) The continental tectosphere. Rev Geophys Space Phys 13:1–12

    Google Scholar 

  • Kalsbeek F, Pidgeon RT, Taylor PN (1987) Nagssugtoqidian mobile belt of West Greenland: a cryptic 1850 Ma suture between two Archaean continents—chemical and isotopic evidence. Earth Planet Sci Lett 85:385–385

    Article  Google Scholar 

  • Kalsbeek F, Nutman AP (1996) Anatomy of the Early Proterozoic Nagssugtoqidian Orogen, West Greenland, explored by reconnaissance SHRIMP U-Pb dating. Geology 24:515–518

    Article  CAS  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    CAS  Google Scholar 

  • Kesson SE, Ringwood AE (1989) Slab-melt interaction 2. The formation of diamonds. Chem Geol 78:97–118

    CAS  Google Scholar 

  • Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho Kimberlite: Implications for the thermal state of the mantle beneath the Slave Craton, northern Canada. J Petrol 40:79–104

    Article  CAS  Google Scholar 

  • Kopylova MG, Russell JK (2000) Chemical stratification of cratonic lithosphere: constraints from the northern Slave craton, Canada. Earth Planet Sci Lett 181:71–87

    Article  CAS  Google Scholar 

  • Kurszlaukis S, Bizzarro M (2003) Magmatic and sedimentary features of a kimberlitic sill in Greenland: Constraints on the emplacement history. Proc 4th Int Dyke Conference, South Africa (in press)

    Google Scholar 

  • Larsen LM, Rex DC, Secher K (1983) The age of carbonatites, kimberlites and lamprophyres from southern West Greenland: recurrent alkaline magmatism during 2,500 million years. Lithos 16:215–221

    CAS  Google Scholar 

  • Larsen LM, Rex DC (1992) A review of the 2,500 Ma span of alkaline-ultramafic, potassic and carbonatitic magmatism in West Greenland. Lithos 28:367–402

    CAS  Google Scholar 

  • Lee C-T, Rudnick RL (1999) Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths from the Labait tuff cone, Tanzania. In: Gurney JJ, Gruney JL, Pascoe MD, Richardson SH (eds) The Nixon volume, Proc 7th Int Kimberlite Conf, pp 503–521

  • MacKenzie JM, Canil D (1999) Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol 134:313–324

    Article  CAS  Google Scholar 

  • Mareschal JC, Poirier A, Rolandone F, Bienfait G, Gariepy C, Lapointe R, Jaupart C (2000) Low mantle heat flow at the edge of the North American continent, Voisey Bay, Labrador. Geophys Res Lett 27:823–826

    Article  Google Scholar 

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18

    CAS  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    CAS  Google Scholar 

  • Mitchell RH (1986). Kimberlites: Mineralogy, geochemistry and petrology. Plenum Press, New York, 442 pp

  • Mitchell RH (1995). Kimberlites, orangeites, and related rocks, Plenum Press, New York, 410 pp

  • Mitchell RH, Scott Smith, Larsen LM (1999) Mineralogy of ultramafic dikes from the Sarfartoq, Sisimiut and Maniitsoq Areas, West Greenland. Proc 7th Int Kimberlite Conf, Cape Town, South Africa. Dawson Volume. National Book Printers, Cape town, South Africa, pp 574–583

  • Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP (1995) Stabilisation of Archaean lithospheric mantle: A Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet Sci Lett 134:341–357

    Article  CAS  Google Scholar 

  • Pearson DG (1999) The age of continental roots. Lithos 48:171–194

    Article  CAS  Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and the thickness of the lithosphere. Tectonophysics 38:279–296

    Google Scholar 

  • Rosing MT, Nutman AP, Løfqvist L (2001) A new fragment of the early earth crust: the Aasivik terrane of West Greenland, Precambrian Res 105:115–128

    Google Scholar 

  • Rudnick RL, Nyblade AA (1999) The thickness and heat production of Archean lithosphere: Constraints from xenolith thermobarometry and surface heat flows. In: Fei Y, Bertka M, Mysen BO (eds) Mantle petrology: Field observations and high pressure experimentation: a tribute to Francis R. Boyd. Geochem Soc Spec Publ 6:3–12

    Google Scholar 

  • Schmidberger SS, Francis D (1999) Nature of mantle roots beneath the North America craton: mantle xenolith evidence from Somerset Island kimberlites. Lithos 48:195–216

    Article  CAS  Google Scholar 

  • Schmidberger SS, Simonetti A, Francis D (2001) Sr-Nd-Pb isotope systematics of mantle xenoliths from Somerset Island kimberlites. Geochim Cosmochim Acta 65:4243–4255

    Article  CAS  Google Scholar 

  • Shimizu N (1999) Young geochemical features in cratonic peridotites from Southern Africa and Siberia. In: Fei Y, Bertka M, Mysen BO (eds) Mantle petrology: Field observations and high pressure experimentation: a tribute to Francis R. Boyd. Geochem Soc Spec Publ 6:47–55

    Google Scholar 

  • Smith D, Boyd FR (1987) Compositional heterogeneities among in a high-temperature lherzolite nodule and implications for mantle processes. In: Nixon PH (ed) Mantle xenolith, Wiley, pp 551–661

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    CAS  Google Scholar 

  • Walter MJ (1999) Melting residues of fertile peridotites and the origin of cratonic lithosphere. In: Fei Y, Bertka M, Mysen BO (eds) Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. Boyd. Geochem Soc Spec Publ 6:225–239

    Google Scholar 

  • Xue X, Baadsgaard H, Irving AJ, Scarfe CM (1990) Geochemical and isotopic characteristics of lithospheric mantle beneath West Kettle River, British Columbia: Evidence from ultramafic xenoliths. J Geophys Res 95:15879–15891

    Google Scholar 

  • Zhao D, Essene EJ, Zhang Y, Hall CM, Wang L (1997) Newly discovered kimberlites and mantle xenoliths from Somerset Island and Brodeur Peninsula, Canada: Pressure, temperature, oxygen fugacity, volatile content and age. NWT Geology Division, Department of Indian and Northern Affairs, Yellowknife, pp 1–105

Download references

Acknowledgements

Dia Met Minerals Inc. and De Beers Exploration Canada are acknowledged for providing samples for this study as well as permission to publish and partial financial support. M.B. acknowledges FCAR (Formation des Chercheurs et l'Aide a la Recherche) Bourse de Recherche en Milieu Pratique program for a doctorate scholarship. R.K.S. acknowledges NSERC and FCAR for funding. J.-C. Mareschal (GEOTOP) is acknowledged for numerous discussions on mantle heat flows. Comments from Roberta Rudnick, Stephan Bernstein, and two anonymous reviewers improved the quality of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bizzarro.

Additional information

Editorial responsibility: T.L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizzarro, M., Stevenson, R.K. Major element composition of the lithospheric mantle under the North Atlantic craton: Evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland. Contrib Mineral Petrol 146, 223–240 (2003). https://doi.org/10.1007/s00410-003-0499-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0499-1

Keywords

Navigation