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Abstract Similar smooth pursuit eye tracking dysfunc-

tions are present across psychotic disorders. They include

pursuit initiation and maintenance deficits that implicate

different functional brain systems. This candidate gene

study examined psychosis-related genotypes regulating

dopamine and glutamate neurotransmission in relation to

these pursuit deficits. One hundred and thirty-eight

untreated first-episode patients with a psychotic disorder

were genotyped for four markers in DRD2 and four

markers in GRM3. The magnitude of eye movement

abnormality in patients was defined in relation to perfor-

mance of matched healthy controls (N = 130). Eighty

three patients were followed after 6 weeks of antipsychotic

treatment. At baseline, patients with a -141C deletion in

DRD2 rs1799732 had slower initiation eye velocity and

longer pursuit latency than CC insertion carriers. Further,

GRM3 rs274622_CC carriers had poorer pursuit mainte-

nance than T-carriers. Antipsychotic treatment resulted in

prolonged pursuit latency in DRD2 rs1799732_CC inser-

tion carriers and a decline in pursuit maintenance in GRM3

rs6465084_GG carriers. The present study demonstrates

for the first time that neurophysiological measures of motor

and neurocognitive deficits in patients with psychotic dis-

orders have different associations with genes regulating

dopamine and glutamate systems, respectively. Alterations

in striatal D2 receptor activity through the -141C Ins/Del

polymorphism could contribute to pursuit initiation deficits

in psychotic disorders. Alterations in GRM3 coding for the

mGluR3 protein may impair pursuit maintenance by

compromising higher perceptual and cognitive processes

that depend on optimal glutamate signaling in corticocor-

tical circuits. DRD2 and GRM3 genotypes also selectively

modulated the severity of adverse motor and neurocogni-

tive changes resulting from antipsychotic treatment.
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Introduction

There is considerable interest in neurophysiological inter-

mediate phenotypes as translational biomarkers to advance

gene and drug discovery in psychiatry [1, 2]. One of the

best established intermediate phenotypes is a neurophysi-

ological deficit referred to as smooth pursuit or eye track-

ing dysfunction that involves a reduced ability to

accurately track slowly moving objects with the eyes [3, 4].

In schizophrenia, this deficit not only occurs in patients but

is familial [5–8]. Consistent with multiple lines of evidence

indicating shared neurobiological alterations and genetic

vulnerability across schizophrenia spectrum disorders and

psychotic affective disorders [4, 9–13], comparable pursuit

deficits have been demonstrated in patients with psychotic

affective disorders [7, 14–17] and their unaffected relatives

[18]. Certain specific pursuit deficits are caused or

increased by antipsychotic treatment [19–22]. However,

these treatment-related effects are not consistent across

patients, suggesting that there is variability which might be

explained by genetic factors that moderate how antipsy-

chotic drugs affect different functional brain systems.

In both patients with schizophrenia and patients with

psychotic affective disorder, two distinct neurophysiological

pursuit impairments have been identified [14–17] that

implicate different functional brain systems in which neuro-

physiology is modulated by different neurotransmitter sys-

tems [23]. First, slowed pursuit initiation in response to the

onset of target motion represents an abnormality in motor

function. Dopamine modulation in the basal ganglia is crucial

for motor response initiation generally and pursuit initiation

specifically [24]. Second, deficits in maintaining accurate

sustained pursuit reflect altered use of higher-order predictive

mechanisms and perceptual analysis of performance that are

dependent on corticocortical connectivity across specific

well-characterized regions of association cortex [25, 26].

This integrated cortical activity is highly dependent on glu-

tamate signaling in frontoparietal tracts [27].

Studies of genetic associations with eye tracking dys-

functions in patients with psychotic disorders differ, first,

with respect to methods applied to measure and analyze

pursuit performance (all studied pursuit maintenance but

not initiation) and second with respect to the selection of

candidate genes coding for catechol-O-methyltransferase,

dopamine receptor 3 (DRD3), dopamine transporter 1

(DAT1), neuregulin-1 and neuregulin-3, RAN-binding

protein, putative transmembrane palmitoyltransferase

(ZDHHC8), receptor for reticulon 4 (RTN4R) or kynu-

renine 3-monooxygenase [28–41]. Whether distinct

neurophysiological pursuit impairments are related to dif-

ferent specific polymorphisms has not yet been examined.

To assess how genes may regulate pursuit without

potential medication confounds, we examined pursuit

performance in a sample of untreated first-episode psy-

chosis patients before and after antipsychotic treatment.

We selected two candidate genes that have been implicated

as risk genes for psychotic disorders and also either for

motor (D2 receptor gene on chromosome 11q23, DRD2) or

cognitive impairments (the type 3 metabotropic glutamate

receptor gene on chromosome 7q21.1-q21.2, GRM3).

Alterations in D2 receptor functions have been related to

psychotic symptoms making the D2 receptor a primary

target of dopamine antagonists including antipsychotic

agents [42, 43]. GRM3 polymorphisms are believed to

contribute to susceptibility to psychosis, altered cognitive

function, altered prefrontal cortical levels of N-acetylas-

partate/creatine [44–47] and the regulation of synaptic

glutamate concentrations via the effects on astrocytes [48].

Both genes have not previously been studied in relation to

pursuit deficits in psychotic disorders. We predicted that

pursuit initiation and maintenance would be related to

genetic polymorphisms regulating dopamine and glutamate

synaptic neurotransmission, respectively.

Our second interest was in the role DRD2 and GRM3

might modulate response to antipsychotic treatment.

Undesirable side effects of D2 antagonists related to D2

receptor occupancy include motor slowing as an aspect of

drug-related parkinsonism [49]. GRM3 polymorphisms

have been associated with negative symptom reduction

with antipsychotic treatment in schizophrenia patients [50,

51]. While GRM3 is associated with cognitive deficits in

schizophrenia, its influence on cognitive outcome after

antipsychotic treatment is yet not established.

Methods and materials

Participants

One hundred and thirty-eight first-episode psychosis

patients comprising 46 women (33.3 %) from in- and

outpatient services from the University of Pittsburgh and

the University of Illinois at Chicago met DSM-IV criteria

for a schizophrenia spectrum disorder (Schiz: schizophre-

nia N = 86, schizoaffective disorder N = 9, schizophren-

iform disorder N = 1), bipolar I disorder with psychosis

(BDP, N = 26) or unipolar depression with psychosis

(UDP, N = 16, Table 1). Diagnoses were made at con-

sensus conferences conducted 4–8 weeks after baseline

testing using all available clinical data, including results
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from the Structured Clinical Interview for DSM [52] and

ratings on the Brief Psychiatric Rating Scale (BPRS) [53].

Groups did not differ between sites with respect to age and

IQ [54].

Inclusion criteria comprised (1) age between 15 and

45 years, (2) no known systemic or neurological disease,

(3) no history of significant head trauma with loss of

consciousness, (4) no substance dependence for at least

1 year and no substance abuse for at least 1 month, and (5)

minimum of 20/40 far acuity, with or without correction.

Only 28 (15 Schiz, 9 BDP, 4 UDP) of 138 patients had

been treated previously in their lifetime with antipsychotic

medication, typically with limited treatment adherence

resulting in a median total lifetime exposure in those

patients of 9 days. At time of testing, all patients were free

of antipsychotic medication and had not taken benzodi-

azepines within 48 h of testing.

A subsample of 83 participants (63 Schiz, 11 BDP, 9

UDP) was available for re-evaluation after 6 weeks of

antipsychotic medication treatment. This subsample did not

differ from the full baseline sample on sociodemographic

features, baseline clinical ratings and oculomotor perfor-

mance. At follow-up, BPRS scores were significantly

reduced compared to baseline (Ftime(1,79) = 54.41,

p \ 0.01) with no difference across diagnostic groups

(mean BPRS difference scores: Schiz -8.5, standard devi-

ation (SD) = 9.1; BDP -9.6 (SD = 9.7), UDP -12.8

(SD = 7.0). Patients were treated with low to moderate

doses of antipsychotics including risperidone (N = 72,

mean dosage 3.0 mg (SD = 1.7), olanzapine (N = 5, mean

dosage 12 mg (SD = 7.6)), haloperidol (N = 2 on 4 and

8 mg/day), aripiprazole (N = 2 on 10 and 15 mg/day) and

quetiapine (N = 2 on 100 and 300 mg/day). Mean chlor-

promazine equivalents [55] were 242 mg ± 146 with no

significant difference between patient groups. Sixteen

patients (9 Schiz, 7 UPD) received adjunctive treatment

with antidepressants, mostly serotonin reuptake inhibitors.

To account for potential site-related effects, patient’s

eye movement data were referenced to data from site-

specific healthy controls (N = 130). This procedure pro-

vided z-scores for each patient relative to the mean and

standard deviation of healthy controls from their site that

were used for statistical analyses of associations with

genetic data. Healthy community controls were matched

for age and IQ as described previously [14]. Exclusion

criteria for controls, in addition to those used for patients,

included any history of Axis I disorders (SCID) and any

known history of psychotic or mood disorder in first-degree

relatives [14]. The study was approved by the Institutional

Review Boards of the University of Pittsburgh and the

University of Illinois at Chicago, and all participants pro-

vided written informed consent. Data were collected from

1993 to 2011.

Eye movement assessment

Pursuit tasks have been described previously in reports of

pursuit data included in the present genetic analyses [14],

with recruitment starting in Pittsburgh and then continuing

in Chicago. Eye movement studies were performed in a

darkened black room in which participants viewed a screen

with their head stabilized in a chin rest. Participants were

instructed to follow a small moving target with their eyes

as precisely as possible. Recording was performed using

infrared sensors mounted on spectacle frames (Model 210,

Applied Science Laboratories, Inc, Bedford, MA). Fixation

targets were presented for 5 s at 0�, ±3�, 6�, 9�, 12� and

15� to calibrate the eye movement data.

To determine pursuit latency, we used a simple ramp

task in which the target moved at an unpredictable time,

direction and speed (either 4�, 8�, 16�, 24� or 32�/s) from

center fixation. Each trial started with central fixation for

2–4 s. Targets were extinguished after reaching ±15� and

reappeared at the central fixation position after a 1-s delay

Table 1 Patient’s characteristics

Schizophrenia spectrum

disorder (N = 96)

Psychotic bipolar

disorder (N = 26)

Psychotic unipolar

depression (N = 16)

Mean age (SD), [Years] 24.5 (7.7) 24.9 (8.5) 21.4 (7.2)

Mean IQ (SD), [from WASI] 96.7 (13.9) 94.5 (13.9) 95.9 (15.3)

Mean genetic ancestry [%]*

West African 35 37 34

European 52 54 56

Native American 13 9 10

Mean baseline BPRS (SD)** 46.2 (9.2) 36.7 (11.1) 43.5 (10.8)

BPRS Brief Psychiatric Rating Scale [53], WASI Wechsler Abbreviated Scale of Intelligence [54]

* as assessed by 105 ancestry informative markers (AIMs)

** F(2,135) = 9.85, p \ 0.01, post hoc: pBDPvsUDP = 0.03, pBDPvsSchiz \ 0.01
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to begin the next trial. Target conditions were presented in

a randomized order resulting in a total of 40 trials (4 rep-

etitions 9 5 speeds 9 2 directions). Latency of pursuit

initiation was defined as time for pursuit velocity to reach

2�/s for at least 20 ms if that preceded the first catch-up

saccade.

To assess eye velocity during the pursuit initiation phase

(first 100 ms) and the maintenance phase, we used a step-

ramp task that was similar to the ramp task. After the initial

central fixation for 2–4 s, the target stepped 3� to the left or

right before continuing moving in that direction at either 4,

8, 16 or 24�/s. The task consisted of 32 trials presented in a

fixed pseudorandom order. Initial open-loop eye velocity

was determined during the first 100 ms after the initial

catch-up saccade following the target step. Maintenance

eye velocity was also measured in the remaining interval of

pursuit after the first 100 ms.

Pursuit analyses

Eye movement data were digitized at 500 Hz. Data from

each trial were visually inspected to eliminate blinks and

other artifacts. All saccades were excluded from data

before calculating pursuit eye velocity. Saccade onset was

defined as the point when eye acceleration exceeded

1,000�/s2 and saccade endpoints were identified at 25 % of

peak deceleration. Both initiation and maintenance eye

velocity were related to target velocity to determine initi-

ation gain and maintenance gain. All eye movement data

were scored blind to participant characteristics.

Since target speed and direction effects did not differ

across groups for any of the three parameters of interest,

i.e., pursuit initiation gain, latency and pursuit maintenance

gain, measurements were averaged across target speed and

direction. Table 2 shows means for all eye movement

parameters of interest in healthy controls and patients

including z-scores used in analyses.

Genotyping

Genomic DNA from patients was isolated from whole

blood using standard protocols and quantified and quality

checked with Picogreen (Invitrogen, Eugene, OR) and

Nanodrop assays (Thermo Scientific, Wilmington, DE).

Pyrosequencing assays were designed using PSQ assay

design software v 1.0.6. (Qiagen, CA).

Genotyping was done blind to symptom ratings. We

selected four candidate single nucleotide polymorphisms

(SNPs) in each of the DRD2 and GRM3 gene regions based

on functional consequence or prior association with disease

risk, pathology, or antipsychotic treatment response [9, 44,

50, 51, 56–58]. Patients were genotyped for the DRD2/

ANKK1 gene region (rs1799732 (-141C Ins/del), rs6277

(957C [ T), rs1800497 (TaqIA), rs1800498 (TaqID)) and

four SNPs in the GRM3 gene (rs6465084, rs274622,

rs1989796, rs1468412). GRM3 rs6465084 and rs1468412

genotypes were determined by TaqManSNP Genotyping

Assays (C__11245618_10 for rs6465084 and

C_7586401_10 for rs1468412 Applied Biosystems, CA)

using a StepOne Plus Real Time PCR system (Applied

Biosystems, CA). All genotype assays were validated using

capillary sequencing. Additionally, approximately 10 % of

samples were re-genotyped to verify assay precision which

were all 100 %. Genotyping calls were 100 % for all

markers.

In addition to DRD2 and GRM3 candidate markers, 105

ancestry informative markers (AIMs) were genotyped

using the Sequenom MassARRAY platform [59, 60] as

previously described [61, 62]. Ancestry was determined for

each individual using AIMs for European, West African

and Native American genetic ancestry [60–63]. Individual

ancestry estimates were obtained from the genotype results

using the Bayesian Markov Chain Monte Carlo (MCMC)

method implemented in STRUCTURE 2.1 [64]. Each

participant was then scored from 0 to 100 % for the

probability of being in each ancestry group (Table 1).

Statistical analyses

Allele and genotype frequencies and Hardy–Weinberg

equilibrium were evaluated with PLINK software in race-

specific groups separately [65], as shown in Table 3. Sig-

nificant deviation from Hardy–Weinberg equilibrium was

observed in both Caucasians and African Americans for

DRD2 rs6277 (p \ 0.01), which was excluded from further

association tests. Linkage disequilibrium (LD) plots were

created with Haploview version 4.2 software [66], as

Table 2 Means with standard deviation (SD) for eye movement

parameters of interest

Healthy

controls

Psychosis

patients

Patient’s

Z-scores

relative

to controls

Pursuit initiation latency at

baseline [ms]

187 (25) 190 (32) 0.16 (1.34)

Pursuit initiation latency at

follow-up [ms]

183 (21) 190 (33) 0.25 (1.36)

Initial eye velocity gain at

baseline

0.82 (0.24) 0.67 (0.25) -0.64 (1.07)

Initial eye velocity gain at

follow-up

0.81 (0.28) 0.66 (0.25) -0.72 (1.02)

Maintenance eye velocity

gain at baseline

0.86 (0.09) 0.81 (0.11) -0.48 (1.27)

Maintenance eye velocity

gain at follow-up

0.86 (0.10) 0.81 (0.12) -0.52 (1.41)
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shown in Fig. 1. Table 3 shows allele and genotype fre-

quencies for DRD2 and GRM3 polymorphisms in the

sample as a whole.

We used fixed-effects one-way analyses of variance

(ANOVAs) with genetic ancestry data as covariates. To

test for genotype-specific effects of antipsychotic treatment

on pursuit parameters of interest (interaction of genotype x

time), we used repeated-measures ANOVAs of the sub-

sample available at both baseline and follow-up, again with

genetic ancestry data as covariates. To account for multiple

comparisons resulting from the seven SNPs considered in

analyses, p-values from SNP-specific analyses were

multiplied by seven to preserve an experiment-wise error

rate of p \ 0.05.

Evaluation of possible confounds

Baseline pursuit performance did not differ between patient

groups or race-specific groups (African American

(N = 58), Caucasian (N = 57) and others (N = 23)

including Hispanic (N = 11), Asian (N = 5) and miscel-

laneous (N = 5)) nor were pursuit variables of interest

correlated with age, IQ or chlorpromazine-equivalent

antipsychotic dose at follow-up. There also were no sig-

nificant interactions between genotypes as related to the

seven markers tested and self-reported race (genotype x

race) or site (genotype x site) for any eye movement

parameter of interest (initial eye velocity gain, pursuit

initiation latency or maintenance eye velocity gain), indi-

cating that pursuit performance did not differ between

genotypes across race groups or sites.

Results

Association of DRD2 with pursuit initiation

Marker rs1799732 (-141C Ins/Del) was significantly

associated with parameters of pursuit initiation. First, at

baseline, -141C deletion carriers had lower initial eye

velocity gain than patients carrying the CC insertion

(genotype: F(1,114)8.45, pcorrected = 0.028). This difference

between genotype groups did not change after 6 weeks of

treatment (genotype x time: p [ 0.05), Fig. 2.

Second, the -141C Ins/Del polymorphism was also

associated with a change in the latency of pursuit initia-

tion after treatment (genotype x time: F(1,79)10.55,

pcorrected = 0.014). -141C deletion carriers had longer

pursuit latency than CC insertion carriers at baseline

(genotype: F(1,79) 12.53, pcorrected = 0.0014) but not at

follow-up (genotype: p [ 0.05). Post hoc analyses revealed

that treatment resulted in an increase in pursuit latency in

CC insertion carriers (paired t(37) 3.61, pcorrected = 0.0056)

in contrast to a slight latency reduction in deletion carriers,

Fig. 3.

There was no association between the -141C Ins/Del

polymorphism and pursuit maintenance gain nor were there

any associations between the DRD2rs1800497 (TaqIA) and

DRD2rs1800498 (TaqID) with any of the pursuit parame-

ters tested.

Association of GRM3 with pursuit maintenance

GRM3 genotype was related to pursuit maintenance gain

but not to either of the pursuit initiation measures. First,

Table 3 Allele and genotype frequencies for DRD2 and GRM3

polymorphisms

SNP Position MAF Alleles Genotype

count AA/Aa/aa

DRD2

rs1800497 113271078 0.319 C:T 68/52/18

rs6277 113283209 0.373 G:A 76/21/41

rs1800498 113291838 0.384 C:T 30/46/62

rs1799732 113346003 0.286 C:- 77/43/18

GRM3

rs274622 86272690 0.319 T:C 66/56/16

rs6465084 86403225 0.304 A:G 66/60/12

rs1468412 86433201 0.42 T:A 49/62/27

rs1989796 86474063 0.339 G:A 65/51/21

Note that Hardy–Weinberg equilibrium was evaluated for each SNP

and race group, i.e., African American and Caucasian, separately. For

more details see supplemental material

SNP positions defined by UCSC genome browser (GRCh37/hg19)

assembly

SNP single nucleotide polymorphism, MAF minor allele frequency

Fig. 1 Linkage disequilibrium for four SNPs in DRD2 and four SNPs

in GRM3 displayed as R2
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there was a significant association of rs274622 with

maintenance eye velocity gain at baseline. The

rs274622_CC genotype had poorer sustained pursuit

maintenance than T-carriers (genotype: F(1,134) 9.80,

pcorrected = 0.014). There was no differential treatment

effect on sustained pursuit performance between T-carriers

and the CC carriers (genotype x time: p [ 0.05), Fig. 4.

With respect to GRM3rs6465084, GG carriers had

unimpaired pursuit maintenance performance at baseline

but showed a decline in performance after treatment while

the baseline deficit in A-carriers did not change after

treatment (genotype x time: F(1,79) 7.95, pcorrected = 0.042).

No associations were observed between GRM3rs1989796

and GRM3rs1468412 with parameters of pursuit initiation

or maintenance.

Discussion

In psychiatric genetics, advances are often constrained by

uncertainties about how gene variants modulate specific

aspects of brain function. Clarification of associations at

the level of specific SNPs in genes that have been identified

to mediate risk to psychosis, in relation to highly specified

neurophysiological parameters, can speed understanding of

illness pathophysiology and the development of novel

targeted therapies. The present candidate gene study of

discrete oculomotor phenotypes demonstrates for the first

time that pursuit initiation and sustained pursuit mainte-

nance have distinct associations with genes regulating

dopamine and glutamate systems, respectively, in untreated

patients with psychotic disorders. Specifically, DRD2 was

associated with pursuit initiation ability, consistent with the

role of dopaminergic neurotransmission in the striatum,

regulating speed of motor response initiation as demon-

strated in preclinical studies and in patients with Parkin-

son’s disease [24]. This association was also modulated by

antipsychotic treatment highlighting the importance of

studying the genotype–phenotype associations of interest in

untreated patients and offering indirect support for the

proposed role of D2 receptor activity and motor response

initiation. Second, variants in GRM3 were associated with

the maintenance of pursuit, which requires active dynamic

Fig. 2 Association of variants of the -141C Del/Ins polymorphism

in DRD2 with initial eye velocity gain in unmedicated patients with

psychotic disorders at baseline (N = 138) and follow-up (N = 83)

after six weeks of antipsychotic treatment. There was no effect of

treatment on genotype differences in repeated-measures ANOVA of

the follow-up sample, means with standard errors are presented, for

detailed statistical results see results section

Fig. 3 Association of variants of the -141C Del/Ins polymorphism

in DRD2 with pursuit latency in a sample of 83 unmedicated patients

with psychotic disorders at baseline and follow-up after 6 weeks of

antipsychotic treatment. Antipsychotic treatment resulted in a reduc-

tion in pursuit latency differences between genotype groups, means

with standard errors are presented, for detailed statistical results see

results section

Fig. 4 Association of variants of rs274622 polymorphisms in GRM3

with maintenance eye velocity gain in unmedicated patients with

psychotic disorders at baseline (N = 138) and follow-up after

6 weeks of antipsychotic treatment (N = 83). There was no effect

of treatment on genotype differences in repeated-measures ANOVA

of the follow-up sample, means with standard errors are presented, for

detailed statistical results see results section
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interaction across corticocortical circuitry for perceptual

analysis and action planning. GRM3 codes for the type 3

metabotropic glutamate receptor (mGluR3) protein that is

essential for optimal glutamate signaling in the brain,

notably in prefrontal cortex as has been shown previously

with other neurocognitive processes in psychotic disorders

[44, 45, 47]. Together, these preliminary findings demon-

strate linkage of specific neurophysiological parameters

with particular functional polymorphisms that regulate

brain neurochemistry in ways believed to be fundamental

in the pathophysiology of psychotic disorders.

Pursuit initiation modulated by the DRD2 promoter

region

Pursuit initiation was impaired in patients carrying a

deletion of cytosine at position-141 in the 5’ promoter

region of DRD2 compared to carriers of a CC insertion at

that position. In healthy subjects, this polymorphism has

been related to altered DRD2 promoter expression in vitro

[67] and changes in D2 receptor density of the striatum

[68]. In schizophrenia, variants of the -141C Ins/Del

polymorphism have been associated with disease risk in

some studies [42, 67, 69–71]. A recent meta-analysis of six

studies suggested association of the Del allele with poorer

antipsychotic drug response compared to the CC genotype

[43].

Our present findings indicate that the -141C Ins/Del

polymorphism affects pursuit initiation in first-episode

psychosis patients, the more motor component of pursuit,

in two different ways. First, the -141C deletion was

associated with reduced initial eye velocity compared to

the CC genotype. This association was not affected by

antipsychotic treatment initiation, suggesting that it repre-

sents a stable genotype–intermediate phenotype association

in psychotic disorders. Second, unmedicated -141C Del

carriers also needed longer time to start pursuit of a moving

target, i.e., their pursuit latency was prolonged compared to

the CC genotype. This association was modulated by

antipsychotic treatment resulting in reduced response

latency in -141C deletion carriers after treatment but

increased latencies in CC insertion carriers. Together, these

findings suggest that altered D2 receptors in striatum due to

a -141C deletion reduce the ability to use retinal motion

signals to quickly initiate a pursuit motor response in

patients.

During the pursuit initiation phase, there is not yet time

for feedback about performance to influence pursuit

velocity; thus, eye velocity directly depends on sensory

input. Such a link between striatal activation during pursuit

and visual motion processing area V5 has been established

in healthy individuals [72]. In contrast, this effect was not

seen in untreated patients with schizophrenia [72], which is

consistent with the idea that a reduced ability for sensory

input to drive striatal activity and motor response initiation

occurs in psychotic disorders. An alteration in dopamine

physiology is a likely cause of this disturbance, and our

findings of an association with D2 genes offer new support

for the more general model that disturbances in striatal

output represent an important component in the neurobi-

ology of psychotic disorders.

Pursuit maintenance modulated by GRM3

Type 3 metabotropic glutamate receptors mediate signal

transduction through G-protein second messenger systems

inhibiting cAMP accumulation [73]. GRM3 has been

associated with prefrontal and hippocampal physiology

during cognitive function in healthy individuals. It has also

been associated with risk for schizophrenia in some studies

[44–46, 74] as well as with risk for psychosis in bipolar I

disorder [75]. Consistent with a potential role in modulat-

ing function in higher cortical function, the rs274622

polymorphism that we found to be associated with pursuit

maintenance has been implicated in modulation of the

auditory cortical response to phoneme change that can be

impaired in schizophrenia [76]. We found that patients

carrying the GRM3 rs274622_T allele demonstrated better

pursuit maintenance than the CC genotype, a difference

that did not change after antipsychotic treatment. Analysis

of the GRM3 promoter region has shown that this poly-

morphism may exist in a TATA sequence representing a

potential transcription factor binding site [77]. The

rs274622_C allele would disrupt this sequence, potentially

reducing mGluR3 expression and thereby dysregulating

glutamate transmission. This could explain our findings of

better sustained pursuit performance in the rs274622_T

allele carriers. In line with this, a previous Japanese case–

control study suggested that haplotypes including the

rs274622_T allele may confer protection against schizo-

phrenia [78].

Secondly, our data suggest an association of the GRM3

rs6465084 polymorphism with changes in pursuit mainte-

nance after antipsychotic treatment. A-carriers had

impaired pursuit maintenance at baseline that did not

change after treatment, while pursuit maintenance in GG

carriers was not impaired at baseline but declined after

treatment. The finding of a stable pursuit maintenance

deficit in patients carrying the A_allele is consistent with

studies, suggesting that the rs6465084_A allele represents a

risk allele for schizophrenia and a modifying marker for the

severity of illness-associated cognitive deficits [79, 80]. In

healthy individuals, AA homozygotes have been shown to

have lower prefrontal N-acetylaspartate levels in vivo

indicating altered synaptic activity and tissue glutamate

[27]. Furthermore, lower mRNA levels of the glial
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123



glutamate transporter EAAT2 have been found in post-

mortem prefrontal cortex of healthy AA homozygotes, a

protein regulated by GRM3 that modulates synaptic glu-

tamate [44]. Healthy AA homozygotes also show height-

ened activation of dorsolateral prefrontal cortex (DLPFC)

during a working memory task [44], which has been

interpreted as reflecting inefficient cortical processing. A

similar activation pattern of DLPFC has been reported in

patients with schizophrenia and their healthy siblings [81].

Notably, two independent fMRI studies revealed increased

DLPFC and frontal eye field activation during pursuit

maintenance in patients with schizophrenia, consistent with

the view that altered glutamate signaling in higher-order

cortical networks disrupts pursuit control in psychotic

disorders [72, 82].

Limitations and future perspectives

While our findings are novel and potentially heuristically

valuable, there are also limitations. Studies of unmedicated

patients with psychosis have the advantage of examining

distinct neurophysiological alterations without confounds

of antipsychotic treatment; however, clinical realities limit

the sample size for such investigations. Thus, although our

sample size must be regarded as large compared to other

eye movement studies in unmedicated first-episode psy-

chosis patients, it is still small for a genetic study. To

enhance the statistical power, we combined patients with

three psychotic disorders based on the knowledge that

previous studies demonstrated comparable pursuit initia-

tion and maintenance impairments in schizophrenia spec-

trum disorders, psychotic bipolar disorder and psychotic

major depression [7, 14, 16, 18, 72]. Consistent with this,

exploratory analyses of our data did not identify signifi-

cantly different genotype–phenotype association in the

individual patient groups. Still, further research is needed

to examine potential disorder-specific effects. With the

small sample of untreated early-course patients, we may

have lacked the statistical power to detect associations with

some candidate markers included in this study (rs1800497

(TaqIA) and rs1800498 (TaqID) in DRD2 and rs1989796

and rs1468412 in GRM3) and to examine the effects of

other genes in modulating the phenotypes of interest in the

framework of a GWAS analysis. Furthermore, our findings

with respect to antipsychotic-related effects in the follow-

up sample must also be regarded as exploratory due to the

small sample size. Last, lacking DNA samples in the

matched controls, we cannot determine whether the geno-

type–phenotype associations are limited to or are stronger

in psychotic patients than in the general population.

Despite these limitations, our findings with a rare and

relatively large sample of untreated psychotic patients

demonstrate one of the first direct associations of illness-

related genotypes that regulate dopamine and glutamate

transmission with specific neurophysiological abnormali-

ties of brain function. They offer a promising approach for

advancing pathophysiological models and understanding

discrete components of the complex multifactorial risks for

psychosis. From a pharmacogenetic perspective, the data

underline the notion that genetic variation influences het-

erogeneous treatment outcomes following antipsychotic

treatment and that neurophysiological biomarkers may be

useful for tracking variability in treatment response across

individuals.
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