Skip to main content
Log in

Advances in laryngeal imaging

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Imaging and image analysis became an important issue in laryngeal diagnostics. Various techniques, such as videostroboscopy, videokymography, digital kymograpgy, or ultrasonography are available and are used in research and clinical practice. This paper reviews recent advances in imaging for laryngeal diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alberti PW (1996) The history of laryngology: a centennial celebration. Otolaryngol Head Neck Surg 114:345–354

    Article  PubMed  CAS  Google Scholar 

  2. Mafee MF, Valvassori GE, Becker M (2005) Imaging of the neck and head, 2nd edn. Thieme, Stuttgart

  3. Uloza V, Saferis V, Uloziene I (2005) Perceptual and acoustic assessment of voice pathology and the efficacy of endolaryngeal phonomicrosurgery. J Voice 19:138–145

    Article  PubMed  Google Scholar 

  4. Gallivan KH, Gallivan GJ (2002) Bilateral mixed laryngoceles: simultaneous strobovideolaryngoscopy and external video examination. J Voice 16:258–266

    Article  PubMed  Google Scholar 

  5. Rumboldt Z, Gordon L, Ackermann RBS (2006) Imaging in head and neck cancer. Curr Treat Options Oncol 7:23–34

    Article  PubMed  Google Scholar 

  6. Ruffing S, Struffert T, Reith AGW (2005) Imaging diagnostics of the pharynx and larynx. Radiologe 45:828–836

    Article  PubMed  CAS  Google Scholar 

  7. Hasso AN, Tang T (1994) Magnetic resonance imaging of the pharynx and larynx. Top Magn Reson Imaging 6:224–240

    PubMed  CAS  Google Scholar 

  8. Hoorweg JJ, Kruijt RH, Heijboer RJ, Eijkemans MJ, Kerrebijn JD (2006) Reliability of interpretation of CT examination of the larynx in patients with glottic laryngeal carcinoma. Arch Otolaryngol Head Neck Surg 135:129–134

    Article  CAS  Google Scholar 

  9. Rubin JS, Lee S, McGuinness J, Hore I, Hill D, Berger L (2004) The potential role of ultrasound in differentiating solid and cystic swellings of the true vocal fold. J Voice 18:231–235

    Article  PubMed  Google Scholar 

  10. Schade G, Kothe C, Leuwer R (2003) Sonography of the larynx—an alternative to laryngoscopy? HNO 51:585–590

    Article  PubMed  CAS  Google Scholar 

  11. Boyanov B, Hadjitodorov S (1997) Acoustic analysis of pathological voices. A voice analysis system for the screening of laryngeal diseases. IEEE Eng Med Biol Mag 16:74–82

    Article  PubMed  CAS  Google Scholar 

  12. Hadjitodorov S, Mitev P (2002) A computer system for acoustic analysis of pathological voices and laryngeal diseases screening. Med Eng Phys 24:419–429

    Article  PubMed  Google Scholar 

  13. Moran RJ, Reilly RB, de Chazal P, Lacy PD (2006) Telephony-based voice pathology assessment using automated speech analysis. IEEE Trans Biomed Eng 53:468–477

    Article  PubMed  Google Scholar 

  14. Umapathy K, Krishnan S, Parsa V, Jamieson DG (2005) Discrimination of pathological voices using a time-frequency approach. IEEE Trans Biomed Eng 52:421–430

    Article  PubMed  Google Scholar 

  15. Hadjitodorov S, Boyanov B, Teston B (2000) Laryngeal pathology detection by means of class-specific neural maps. IEEE Trans Inf Technol Biomed 4:68–73

    Article  PubMed  CAS  Google Scholar 

  16. Godino-Llorente JI, Gomez-Vilda P (2004) Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors. IEEE Trans Biomed Eng 51:380–384

    Article  PubMed  CAS  Google Scholar 

  17. de Oliveira Rosa M, Pereira JC, Grellet M (2000) Adaptive estimation of residue signal for voice pathology diagnosis. IEEE Trans Biomed Eng 47:96–104

    Article  Google Scholar 

  18. Gelzinis A, Verikas A, Bacauskiene M (2008) Automated speech analysis applied to laryngeal disease categorization. Comput Methods Programs Biomed 91:36–47

    Article  PubMed  CAS  Google Scholar 

  19. Verikas A, Gelzinis A, Bacauskiene M, Uloza V, Kaseta M (2009) Using the patient’s questionnaire data to screen laryngeal disorders. Comput Biol Med 39:148–155

    Article  PubMed  CAS  Google Scholar 

  20. Hertegård S, Gauffin J (1995) Glottal area and vibratory patterns studied with simultaneous stroboscopy, flow glottography, and electroglottography. J Speech Hear Res 38:85–100

    PubMed  Google Scholar 

  21. Henrich N, d’Alessandro C, Doval B, Castellengo M (2004) On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. J Acoust Soc Am 115:1321–1332

    Article  PubMed  Google Scholar 

  22. Ilgner JFR, Palm C, Schutz AG, Spitzer K, Westhofen M, Lehmann TM (2003) Colour texture analysis for quantitative laryngoscopy. Acta Otolaryngol 123:730–734

    Article  PubMed  Google Scholar 

  23. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621

    Article  Google Scholar 

  24. Gelzinis A, Verikas A, Bacauskiene M (2007) Increasing the discrimination power of the co-occurrence matrix-based features. Pattern Recognit 40:2367–2372

    Article  Google Scholar 

  25. Verikas A, Gelzinis A, Bacauskiene M, Uloza V (2006) Towards a computer-aided diagnosis system for vocal cord diseases. Artif Intell Med 36:71–84

    Article  PubMed  CAS  Google Scholar 

  26. Verikas A, Gelzinis A, Valincius D, Bacauskiene M, Uloza V (2007) Multiple feature sets based categorization of laryngeal images. Comput Methods Programs Biomed 85:257–266

    Article  PubMed  CAS  Google Scholar 

  27. Poels PJP, de Jong FICS, Schutte HK (2003) Consistency of the preoperative and intraoperative diagnosis of benign vocal fold lesions. J Voice 17:425–433

    Article  PubMed  Google Scholar 

  28. Verikas A, Gelzinis A, Bacauskiene M, Uloza V (2006) Integrating global and local analysis of colour, texture and geometrical information for categorizing laryngeal images. Intern J Pattern Recognit Artif Intell 20:1187–1205

    Article  Google Scholar 

  29. Hanson DG, Jiang J, Chi W (1998) Quantitative color analysis of laryngeal erythema in chronic posterior laryngitis. J Voice 12:78–83

    Article  PubMed  CAS  Google Scholar 

  30. Arens C, Reussner D, Woenkhaus J, Leunig A, Betz CS, Glanz H (2007) Indirect fluorescence laryngoscopy in the diagnosis of precancerous and cancerous laryngeal lesions. Eur Arch Otorhinolaryngol 264:621–626

    Article  PubMed  CAS  Google Scholar 

  31. Arens C, Dreyer T, Glanz H, Malzahn K (2004) Indirect autofluorescence laryngoscopy in the diagnosis of laryngeal cancer and its precursor lesions. Eur Arch Otorhinolaryngol 261:71–76

    Article  PubMed  CAS  Google Scholar 

  32. Baletic N, Petrovic Z, Pendjer I, Malicevic H (2004) Autofluorescent diagnostics in laryngeal pathology. Eur Arch Otorhinolaryngol 261:233–237

    Article  PubMed  Google Scholar 

  33. Csanady M, Kiss JG, Ivan L, Jori J, Czigner J (2004) ALA (5-aminolevulinic acid)-induced protoporphyrin IX fluorescence in the endoscopic diagnostic and control of pharyngo-laryngeal cancer. Eur Arch Otorhinolaryngol 261:262–266

    Article  PubMed  Google Scholar 

  34. Zargi M, Fajdiga I, Smid L (2000) Autofluorescence imaging in the diagnosis of laryngeal cancer. Eur Arch Otorhinolaryngol 257:17–23

    Article  PubMed  CAS  Google Scholar 

  35. Hsiao TY, Wang CL, Chen CN, Hsieh FJ, Shau YW (2001) Noninvasive assessment of laryngeal phonation function using color doppler ultrasound imaging. Ultrasound Med Biol 27:1035–1040

    Article  PubMed  CAS  Google Scholar 

  36. Hsiao TY, Wang CL, Chen CN, Hsieh FJ, Shau YW (2002) Elasticity of human vocal folds measured in vivo using color doppler imaging. Ultrasound Med Biol 28:1145–1152

    Article  PubMed  Google Scholar 

  37. Shau YW, Wang CL, Hsieh FJ, Hsiao TY (2001) Noninvasive assessment of vocal fold mucosal wave velocity using color doppler imaging. Ultrasound Med Biol 27:1451–1460

    Article  PubMed  CAS  Google Scholar 

  38. Niimi S, Matsunaga A, Hirose H (1992) Ultrasonic observation of the vertical movement of the larynx during phonation. In: Proceedings of international congress on acoustics, vol 1–4, Beijing, pp 1317–1318

  39. Goncalves MI, Leonard R (1998) A hardware-software system for analysis of video images. J Voice 12:143–150

    Article  PubMed  CAS  Google Scholar 

  40. Popolo PS, Titze IR (2008) Qualification of a quantitative laryngeal imaging system using videostroboscopy and videokymography. Ann Otol Rhinol Laryngol 117:404–412

    PubMed  Google Scholar 

  41. Rihkanen H, Reijonen P, Lehikoinen-Soderlund S, Lauri ER (2004) Videostroboscopic assessment of unilateral vocal fold paralysis after augmentation with autologous fascia. Eur Arch Otorhinolaryngol 261:177–183

    Article  PubMed  Google Scholar 

  42. Lee JS, Kim IE, Sung MW, Kim KH, Sung MY, Park KS (2001) A method for assessing the regional vibratory pattern of vocal folds by analysing the video recording of stroboscopy. Med Biol Eng Comput 39:273–278

    Article  PubMed  CAS  Google Scholar 

  43. Woo P, Colton RH, Casper JK, Brewer DW (1991) Diagnostic value of stroboscopic examination in hoarse patients. J Voice 5:231–238

    Article  Google Scholar 

  44. Colton RH, Woo P, Brewer DW, Griffin B, Casper J (1995) Stroboscopic signs associated with benign lesions of the vocal folds. J Voice 9:312–325

    Article  PubMed  CAS  Google Scholar 

  45. Sung MW, Kim KH, Koh TY, Kwon TY, Mo JH, Choi SH, Lee JS, Park KS, Kim EJ, Sung MY (1999) Videostrobokymography: a new method for the quantitative analysis of vocal fold vibration. Laryngoscope 109:1859–1863

    Article  PubMed  CAS  Google Scholar 

  46. Sulter AM, Schutte HK, Miller DG (1996) Standardized laryngeal videostroboscopic rating: differences between untrained and trained male and female subjects, and effects of varying sound intensity fundamental frequency, and age. J Voice 10:175–189

    Article  PubMed  CAS  Google Scholar 

  47. Deguchi S, Ishimaru Y, Washio S (2007) Preliminary evaluation of stroboscopy system using multiple light sources for observation of pathological vocal fold oscillatory pattern. Ann Otol Rhinol Laryngol 116:687–694

    PubMed  Google Scholar 

  48. Schade G, Hess M, Muller F, Kirchhoff T, Ludwigs M, Hillman R, Kobler J (2002) Physical and technical elements of short-interval, color-filtered double strobe flash-stroboscopy. HNO 50:1079–1083

    Article  PubMed  CAS  Google Scholar 

  49. Hess MM, Ludwigs M (2000) Strobophotoglottographic transillumination as a method for the analysis of vocal fold vibration patterns. J Voice 14:255–271

    Article  PubMed  CAS  Google Scholar 

  50. Dailey SH, Kobler J, Hillman RE, Tangrom K, Thananart E, Mauri M, Zeitels SM (2005) Endoscopic measurement of vocal fold movement during adduction and abduction. Laryngoscope 115:178–183

    Article  PubMed  Google Scholar 

  51. Svec JG, Schutte HK (1996) Videokymography: high-speed line scanning of vocal fold vibration. J Voice 10:201–205

    Article  PubMed  CAS  Google Scholar 

  52. Schutte HK, Svec JG, Sram F (1998) First results of clinical application of videokymography. Laryngoscope 108:1206–1210

    Article  PubMed  CAS  Google Scholar 

  53. Qiu QJ, Schutte HK (2006) A new generation videokymography for routine clinical vocal fold examination. Laryngoscope 116:1824–1828

    Article  PubMed  Google Scholar 

  54. Qiu QJ, Schutte HK (2007) Real-time kymographic imaging for visualizing human vocal-fold vibratory function. Rev Sci Instrum 78:1–6

    Google Scholar 

  55. Manfredi C, Bocchi L, Bianchi S, Migali N, Cantarella G (2006) Objective vocal fold vibration assessment from videokymographic images. Biomed Signal Process Control 1:129–136

    Article  Google Scholar 

  56. de Leeuw IMV, Festen JM, Mahieu HF (2001) Deviant vocal fold vibration as observed during videokymography: the effect on voice quality. J Voice 15:313–322

    Article  Google Scholar 

  57. Eysholdt U, Tigges M, Wittenberg T, Proschel U (1996) Direct evaluation of high-speed recordings of vocal fold vibrations. Folia Phoniatr Logop 48:163–170

    Article  PubMed  CAS  Google Scholar 

  58. Kiritani S, Honda K, Imagawa H, Hirose H (1986) Simultaneous high-speed digital recording of vocal fold vibration and speech signal. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, vol 11, Tokyo, pp 1633–1636

  59. Kiritani S, Imagawa H, Hirose H (1988) High-speed digital image recording for the observation of vocal cord vibration. In: Vocal physiology: voice production, mechanism, and functions. Raven Press, New York, pp 261–269

  60. Kiritani S, Imagawa H, Hirose H (1990) Vocal cord vibration and voice source characteristics—observations by a high-speed digital recording. In: Proceedings of the international conference on spoken language processing (ICSLP ’90), Kobe, pp 61–64

  61. Kiritani S, Hirose H, Imagawa H (1993) High-speed digital image-analysis of vocal cord vibration in diplophonia. Speech Commun 13:23–32

    Article  Google Scholar 

  62. Kiritani S, Hirose H, Imagawa H (1993) High-speed digital image recording system for observing vocal cord vibration. Ann Bull RILP 27:79–87

    Google Scholar 

  63. Sakakibara KT, Imagawa H, Konishi T, Kondo K, Murano EZ, Kumada M, Niimi S (2001) Vocal fold and false vocal fold vibrations in throat singing and synthesis of khöömei. In: Proceedings of the international computer music conference 2001, Havana, Cuba, International Computer Music Association, pp 135–138

  64. Hertegard S (2005) What have we learned about laryngeal physiology from high-speed digital videoendoscopy? Curr Opin Otolaryngol Head Neck Surg 13:152–156

    Article  PubMed  Google Scholar 

  65. Kendall KA, Browning MM, Skovlund SM (2005) Introduction to high-speed imaging of the larynx. Curr Opin Otolaryngol Head Neck Surg 13:135–137

    Article  PubMed  Google Scholar 

  66. Schwarz R, Dollinger M, Wurzbacher T, Eysholdt U, Lohscheller J (2008) Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model. J Acoust Soc Am 123:2717–2732

    Article  PubMed  Google Scholar 

  67. Tigges M, Wittenberg T, Mergell P, Eysholdt U (1999) Imaging of vocal fold vibration by digital multi-plane kymography. Comput Med Imaging Graph 23:323–330

    Article  PubMed  CAS  Google Scholar 

  68. Kim DY, Kim LS, Kim KH, Sung MW, Roh JL, Kwon TK, Lee SJ, Choi SH, Wang SG, Sung MY (2003) Videostrobokymographic analysis of benign vocal fold lesions. Acta Otolaryngol 123:1102–1109

    Article  PubMed  Google Scholar 

  69. Eysholdt U, Rosanowski F, Hoppe U (2003) Vocal fold vibration irregularities caused by different types of laryngeal asymmetry. Eur Arch Otorhinolaryngol 260:412–417

    Article  PubMed  CAS  Google Scholar 

  70. Lohscheller J, Toy H, Rosanowski F, Eysholdt U, Dollinger M (2007) Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Med Image Anal 11:400–413

    Article  PubMed  Google Scholar 

  71. Deliyski DD (2005) Endoscope motion compensation for laryngeal high-speed videoendoscopy. J Voice 19:485–496

    Article  PubMed  Google Scholar 

  72. Deliyski D, Petrushev P (2003) Methods for objective assessment of high-speed videoendoscopy. In: Proceedings of the 6th international conference: advances in quantitative laryngology, voice and speech research, AQL-2003, Hamburg, Germany, pp 1–16

  73. Tao C, Zhang Y, Jiang JJ (2007) Extracting physiologically relevant parameters of vocal folds from high-speed video image series. IEEE Trans Biomed Eng 54:794–801

    Article  PubMed  Google Scholar 

  74. Yan Y, Ahmad K, Kunduk M, Bless D (2005) Analysis of vocal-fold vibrations from high-speed laryngeal images using a Hilbert transform-based methodology. J Voice 19:161–175

    Article  PubMed  Google Scholar 

  75. Yan Y, Bless D, Chen X (2005) Biomedical image analysis in high-speed laryngeal imaging of voice production. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, Shanghai, pp 7684–7687

  76. Larsson H, Hertegard S, Lindestad PA, Hammarberg B (2000) Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report. Laryngoscope 110:2117–2122

    Article  PubMed  CAS  Google Scholar 

  77. Yan Y, Chen X, Bless D (2006) Automatic tracing of vocal-fold motion from high-speed digital images. IEEE Trans Biomed Eng 53:1394–1400

    Article  PubMed  Google Scholar 

  78. Wittenberg T, Moser M, Tigges M, Eysholdt U (1995) Recording, processing, and analysis of digital high-speed sequences in glottography. Mach Vis Appl 8:399–404

    Google Scholar 

  79. Allin S, Galeotti J, Stetten G, Dailey SH (2004) Enhanced snake based segmentation of vocal folds. In: Proceedings of the IEEE international symposium on biomedical imaging, Washington, DC, IEEE, pp 812–815

  80. Marendic B, Galatsanos N, Bless D (2001) A new active contour algorithm for tracking vocal folds. In: Proceedings of the IEEE international conference on image processing, Thessaloniki, pp 397–400

  81. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  82. Lohscheller J, Dollinger M, Schuster M, Schwarz R, Eysholdt U, Hoppe U (2004) Quantitative investigation of the vibration pattern of the substitute voice generator. IEEE Trans Biomed Eng 51:1394–1400

    Article  PubMed  Google Scholar 

  83. Osma-Ruiz V, Godino-Llorente JI, Saenz-Lechon N, Fraile R (2008) Segmentation of the glottal space from laryngeal images using the watershed transform. Comput Med Imaging Graph 32:193–201

    Article  PubMed  Google Scholar 

  84. Lohscheller J, Eysholdt U, Toy H, Dollinger M (2008) Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-d diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans Med Imaging 27:300–309

    Article  PubMed  Google Scholar 

  85. Braunschweig T, Schelhorn-Neise P, Dollinger M (2008) Diagnosis of functional voice disorders by using the high speed recording technics. Laryngorhinootologie 87:323–330

    Article  PubMed  CAS  Google Scholar 

  86. Mortensen M, Woo P (2008) High-speed imaging used to detect vocal fold paresis: a case report. Ann Otol Rhinol Laryngol 117:684–687

    PubMed  Google Scholar 

  87. Dollinger M, Braunschweig T, Lohscheller J, Eysholdt U, Hoppe U (2003) Normal voice production: computation of driving parameters from endoscopic digital high speed images. Methods Inf Med 42:271–276

    PubMed  CAS  Google Scholar 

  88. Braunschweig T, Flaschka J, Schelhorn-Neise P, Dollinger M (2008) High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias. Med Eng Phys 30:59–66

    Article  PubMed  CAS  Google Scholar 

  89. Dollinger M, Hoppe U, Hettlich F, Lohscheller J, Schuberth S, Eysholdt U (2002) Vibration parameter extraction from endoscopic image series of the vocal folds. IEEE Trans Biomed Eng 49:773–781

    Article  PubMed  Google Scholar 

  90. Schwarz R, Hoppe U, Schuster M, Wurzbacher T, Eysholdt U, Lohscheller J (2006) High-precision measurement of the vocal fold length and vibratory amplitudes. IEEE Trans Biomed Eng 53:1099–1108

    Article  PubMed  Google Scholar 

  91. Mergell P, Herzel HP, Titze IR (2000) Irregular vocal-fold vibration—high speed observation and modeling. J Acoust Soc Am 108:2996–3002

    Article  PubMed  CAS  Google Scholar 

  92. Yan Y, Damrose E, Bless D (2007) Automatic tracing of vocal-fold motion from high-speed digital images. J Voice 21:604–616

    Article  PubMed  Google Scholar 

  93. Lohscheller J, Doellinger M, McWhorter AJ, Kunduk M (2008) Preliminary study on the quantitative analysis of vocal loading effects on vocal fold dynamics using phonovibrograms. Ann Otol Rhinol Laryngol 117:484–493

    PubMed  Google Scholar 

  94. Granqvist S, Lindestad PA (2001) A method of applying fourier analysis to high-speed laryngoscopy. J Acoust Soc Am 110:3193–3197

    Article  PubMed  CAS  Google Scholar 

  95. Wittenberg T, Tigges M, Mergell P, Eysholdt U (2000) Functional imaging of vocal fold vibration: digital multislice high-speed kymography. J Voice 14:422–442

    Article  PubMed  CAS  Google Scholar 

  96. Eysholdt U, Rosanowski F, Hoppe U (2003) Measurement and interpretation of irregular vocal fold vibrations. HNO 51:710–716

    Article  PubMed  CAS  Google Scholar 

  97. Liu L, Galatsanos N, Bless D (2002) A new approach for analysis of vibrating vocal folds. In: Proceedings of the IEEE international symposium on biomedical imaging, Washington, DC, pp 589–592

  98. Kiritani S, Niimi S, Imagawa H, Hirose H (1995) Vocal fold vibrations associated with involuntary voice changes in certain pathological cases. In: Vocal fold physiology: voice quality control. Vocal Fold Physiology Series, Kurume, Japan, pp 269–281

  99. Koster O, Marx B, Gemmar P, Hess MM, Ktinzel HJ (1999) Qualitative and quantitative analysis of voice onset by means of a multidimensional voice analysis system (mvas) using high-speed imaging. J Voice 13:355–374

    Article  PubMed  CAS  Google Scholar 

  100. Bailly L, Henrich N, Webb M, Muller F, Licht AK, Hess M (2007) Exploration of vocal-folds and ventricular-bands interaction in singing using high-speed cinematography and electroglottography. In: 19th international congress on acoustics, Madrid, Spain, pp 1–6

  101. Granqvist S, Hertegård S, Larsson H, Sundberg J (2003) Simultaneous analysis of vocal fold vibration and transglottal airflow: exploring a new experimental setup. J Voice 17:319–330

    Article  PubMed  Google Scholar 

  102. Lindestad PA, Sodersten M, Merker B, Granqvist S (2001) Voice source characteristics in mongolian “throat singing” studied with high-speed imaging technique, acoustic spectra, and inverse filtering. J Voice 15:78–85

    Article  PubMed  CAS  Google Scholar 

  103. Svec JG, Schutte HK (2005) Accuracy of measurements on digital videostroboscopic images of the vocal folds. Ann Otol Rhinol Laryngol 114:443–450

    Google Scholar 

  104. Schuberth S, Hoppe U, Dollinger M, Lohscheller J, Eysholdt U (2002) High-precision measurement of the vocal fold length and vibratory amplitudes. Laryngoscope 112:1043–1049

    Article  PubMed  Google Scholar 

  105. Schuster M, Lohscheller J, Kummer P, Eysholdt U, Hoppe U (2005) Laser projection in high-speed glottography for high-precision measurements of laryngeal dimensions and dynamics. Eur Arch Otorhinolaryngol 262:477–481

    Article  PubMed  Google Scholar 

  106. Wurzbacher T, Voigt I, Schwarz R, Dollinger M, Hoppe U, Penne J, Eysholdt U, Lohscheller J (2008) Calibration of laryngeal endoscopic high-speed image sequences by an automated detection of parallel laser line projections. Med Image Anal 12:300–317

    Article  PubMed  Google Scholar 

  107. Schade G, Muller F (2005) Physical and technical elements of short-interval, color-filtered double strobe flash-stroboscopy. HNO 53:1085–1091

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from The Agency for International Science and Technology Development Programmes, Lithuania (COST Action 2103). We acknowledge very helpful comments from the anonymous reviewer.

Conflict of interest statement

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Verikas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verikas, A., Uloza, V., Bacauskiene, M. et al. Advances in laryngeal imaging. Eur Arch Otorhinolaryngol 266, 1509–1520 (2009). https://doi.org/10.1007/s00405-009-1050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-009-1050-4

Keywords

Navigation