Skip to main content
Log in

Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS)

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies that affects women in reproductive age. MicroRNAs (miRNAs) play crucial roles in normal function of female reproductive system and folliculogenesis. Deregulated expression of miRNAs in PCOS condition may be significantly implicated in the pathogenesis of PCOS. We determined relative expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells (GLCs), follicular fluid (FF), and serum of PCOS patients.

Methods

Human subjects were divided into PCOS (n = 20) and control (n = 21) groups. GLCs, FF, and serum were isolated and stored. RNA isolation was performed and cDNA was reversely transcribed using specific stem-loop RT primers. Relative expression of miRNAs was calculated after normalization against U6 expression. Correlation of miRNAs’ expression level with basic clinical features and predictive value of miRNAs in FF and serum were appraised.

Results

Relative expression of miR-145 and miR-182 in GLCs was significantly decreased in PCOS, but miR-182 in FF of PCOS patients revealed up-regulated levels. Significant correlations between level of miRNAs in FF and serum and hormonal profile of subjects were observed. MiR-182 in FF showed a significant predictive value with AUC of 0.73, 76.4% sensitivity, and 70.5% specificity which was improved after combination of miR-182 and miR-145.

Conclusions

A significant dysregulation of miR-145 and miR-182 in GLCs of PCOS may indicate their involvement in pathogenesis of PCOS. Differential up-regulation of miR-182 in FF of PCOS patients with its promising predictive values for discrimination of PCOS reinforced the importance of studying miRNAs’ profile in FF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Franks S (1995) Polycystic ovary syndrome. N Engl J Med 333(13):853–861

    Article  CAS  PubMed  Google Scholar 

  2. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7(4):219–231

    Article  CAS  PubMed  Google Scholar 

  3. Hughesdon P (1982) Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called” hyperthecosis”. Obstet Gynecol Surv 37(2):59–77

    Article  CAS  PubMed  Google Scholar 

  4. Bennett J, Wu Y-G, Gossen J, Zhou P, Stocco C (2012) Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility. Endocrinology 153(5):2474–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pelusi C, Ikeda Y, Zubair M, Parker KL (2008) Impaired follicle development and infertility in female mice lacking steroidogenic factor 1 in ovarian granulosa cells1. Biol Reprod 79(6):1074–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Willis DS, Watson H, Mason HD, Galea R, Brincat M, Franks S (1998) Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation 1. J Clin Endocrinol Metab 83(11):3984–3991

    CAS  PubMed  Google Scholar 

  7. Coskun S, Otu HH, Awartani KA, Al-Alwan LA, Al-Hassan S, Al-Mayman H, Kaya N, Inan MS (2013) Gene expression profiling of granulosa cells from PCOS patients following varying doses of human chorionic gonadotropin. J Assist Reprod Genet 30(3):341–352

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shalev E, Goldman S, Ben-Shlomo I (2001) The balance between MMP-9 and MMP-2 and their tissue inhibitor (TIMP)-1 in luteinized granulosa cells: comparison between women with PCOS and normal ovulatory women. Mol Hum Reprod 7(4):325–331

    Article  CAS  PubMed  Google Scholar 

  9. Kawamata T, Tomari Y (2010) Making risc. Trends Biochem Sci 35(7):368–376

    Article  CAS  PubMed  Google Scholar 

  10. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Fang Y, Liu Y, Yang X (2015) MicroRNAs in ovarian function and disorders. J Ovar Res 8(1):51

    Article  Google Scholar 

  12. Sørensen AE, Wissing ML, Salö S, Englund ALM, Dalgaard LT (2014) MicroRNAs related to polycystic ovary syndrome (PCOS). Genes 5(3):684–708

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teague EMCO, Hull ML (2010) The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 16(2):142–165

    Article  PubMed  Google Scholar 

  14. Karakaya C, Guzeloglu-Kayisli O, Uyar A, Kallen AN, Babayev E, Bozkurt N, Unsal E, Karabacak O, Seli E (2015) Poor ovarian response in women undergoing in vitro fertilization is associated with altered microRNA expression in cumulus cells. Fertil Steril 103(6):1469–1476 (e1463)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sørensen AE, Wissing ML, Englund ALM, Dalgaard LT (2016) MicroRNA species in follicular fluid associating with polycystic ovary syndrome and related intermediary phenotypes. J Clin Endocrinol Metab 101(4):1579–1589

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sirotkin AV, Kisova G, Brenaut P, Ovcharenko D, Grossmann R, Mlyncek M (2014) Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. MicroRNA (Shariqah, United Arab Emirates) 3(1):29–36

    CAS  Google Scholar 

  17. Sirotkin AV, Ovcharenko D, Grossmann R, Laukova M, Mlynček M (2009) Identification of MicroRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol 219(2):415–420

    Article  CAS  PubMed  Google Scholar 

  18. Cai G, Ma X, Chen B, Huang Y, Liu S, Yang H, Zou W (2017) MicroRNA-145 negatively regulates cell proliferation through targeting IRS1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome. Reprod Sci 24(6):902–910. doi:10.1177/1933719116673197

    Article  PubMed  Google Scholar 

  19. Yan G, Zhang L, Fang T, Zhang Q, Wu S, Jiang Y, Sun H, Hu Y (2012) MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett 586(19):3263–3270

    Article  CAS  PubMed  Google Scholar 

  20. Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlynček M (2010) Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 223(1):49–56

    CAS  PubMed  Google Scholar 

  21. Hossain MM, Cao M, Wang Q, Kim JY, Schellander K, Tesfaye D, Tsang BK (2013) Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J Ovar Res 6(1):36

    Article  CAS  Google Scholar 

  22. Gebremedhn S, Salilew-Wondim D, Ahmad I, Sahadevan S, Hossain MM, Hoelker M, Rings F, Neuhoff C, Tholen E, Looft C (2015) MicroRNA expression profile in bovine granulosa cells of preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PLoS One 10(5):e0125912

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gebremedhn S, Salilew-Wondim D, Hoelker M, Rings F, Neuhoff C, Tholen E, Schellander K, Tesfaye D (2016) MicroRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1 1. Biol Reprod 94(6):127, 121-111

    Article  Google Scholar 

  24. Eshre, TR, Group A-SPCW (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81(1):19–25

    Article  Google Scholar 

  25. Ferrero H, Delgado-Rosas F, Garcia-Pascual CM, Monterde M, Zimmermann RC, Simón C, Pellicer A, Gómez R (2012) Efficiency and purity provided by the existing methods for the isolation of luteinized granulosa cells: a comparative study. Hum Reprod 27(6):1781–1789

    Article  CAS  PubMed  Google Scholar 

  26. Mohammadi-Yeganeh S, Paryan M, Samiee SM, Soleimani M, Arefian E, Azadmanesh K, Mostafavi E, Mahdian R, Karimipoor M (2013) Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol Biol Rep 40(5):3665–3674

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Jia Y, Zheng R, Guo Y, Wang Y, Guo H, Fei M, Sun S (2010) Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem 56(12):1830–1838

    Article  CAS  PubMed  Google Scholar 

  28. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate the existence of myocardial damage. Circ Cardiovasc Genet 4(4):446–454. doi:10.1161/CIRCGENETICS.110.958975

    Article  CAS  PubMed  Google Scholar 

  29. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L (2013) Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 98(7):3068–3079

    Article  CAS  PubMed  Google Scholar 

  30. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3. 0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466. doi:10.1093/nar/gkv403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lei L, Jin S, Gonzalez G, Behringer RR, Woodruff TK (2010) The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 315(1):63–73

    Article  CAS  PubMed  Google Scholar 

  32. Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22(10):2336–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Y-H, Heneidi S, Lee J-M, Layman LC, Stepp DW, Gamboa GM, Chen B-S, Chazenbalk G, Azziz R (2013) miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62(7):2278–2286. doi:10.2337/db12-0963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murri M, Insenser M, Fernández-Durán E, San-Millán JL, Escobar-Morreale HF (2013) Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 expression. J Clin Endocrinol Metab 98(11):E1835–E1844

    Article  CAS  PubMed  Google Scholar 

  35. Jiang L, Huang J, Li L, Chen Y, Chen X, Zhao X, Yang D (2015) MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J Clin Endocrinol Metab 100(5):E729–E738

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee H-J, Barad D, Gleicher N, Hammes SR (2014) Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci 111(8):3008–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schauer S, Sontakke S, Watson E, Esteves C, Donadeu FX (2013) Involvement of miRNAs in equine follicle development. Reproduction 146(3):273–282

    Article  CAS  PubMed  Google Scholar 

  38. Eisenberg I, Nahmias N, Persky MN, Greenfield C, Goldman-Wohl D, Hurwitz A, Haimov-Kochman R, Yagel S, Imbar T (2017) Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil Steril 107(1):269–275

    Article  CAS  PubMed  Google Scholar 

  39. Rodgers RJ, Irving-Rodgers HF (2010) Formation of the ovarian follicular antrum and follicular fluid 1. Biol Reprod 82(6):1021–1029

    Article  CAS  PubMed  Google Scholar 

  40. Knight PG, Glister C (2006) TGF-β superfamily members and ovarian follicle development. Reproduction 132(2):191–206

    Article  CAS  PubMed  Google Scholar 

  41. Christian M, Lam EW, Wilson MS, Brosens JJ (2011) FOXO transcription factors and their role in disorders of the female reproductive tract. Curr Drug Targets 12(9):1291–1302

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Research Deputy of Tehran University of Medical Sciences (Grant number: 92-02-30-22140).

Author information

Authors and Affiliations

Authors

Contributions

MN: protocol development, data collection, data analysis, and manuscript writing; SN: data collection and data analysis; AA: project development and data collection; EA: protocol development and data analysis; RM: protocol development and data analysis; EA: data collection and data analysis; MSN: manu writing; FA: project development, data analysis, and manuscript editing.

Corresponding author

Correspondence to Fardin Amidi.

Ethics declarations

Conflict of interest

The authors of the current paper declare no conflict of interest regarding to all time periods of working—neither financial support nor personal relationship. Mohammad Naji declares that he has no conflict of interest. Saeid nekoonam declares that he has no conflict of interest. Ashraf Aleyasin declares that she has no conflict of interest. Ehsan Arefian declares that he has no conflict of interest. Reza Mahdian declares that he has no conflict of interest. Elham Azizi declares that she has no conflict of interest. Maryam Shabani Nashtaei declares that she has no conflict of interest. Fardin Amidi declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naji, M., Nekoonam, S., Aleyasin, A. et al. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch Gynecol Obstet 297, 221–231 (2018). https://doi.org/10.1007/s00404-017-4570-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-017-4570-y

Keywords

Navigation