Skip to main content

Advertisement

Log in

Keloid scarring: bench and bedside

  • Mini Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Wound healing is a fundamental complex-tissue reaction leading to skin reconstitution and thereby ensuring survival. While, fetal wounds heal without scarring, a normal “fine line” scar is the clinical outcome of an undisturbed wound healing in adults. Alterations in the orchestrated wound healing process result in hypertrophic or keloid scarring. Research in the past decades attempted to identify genetic, cellular, and molecular factors responsible for these alterations. These attempts lead to several new developments in treatments for keloids, such as, imiquimod, inhibition of transforming growth factor beta, and recombinant interleukin-10. The urgent need for better therapeutics is underlined by recent data substantiating an impaired quality of life in keloid and hypertrophic scar patients. Despite the increasing knowledge about the molecular regulation of scar formation no unifying theory explaining keloid development has been put forward until today. This review aims to give an overview about the genetic and molecular background of keloids and focus of the current research on keloid scarring with special emphasis on new forthcoming treatments. Clinical aspects and the spectrum of scarring are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pitche P (2006) What is true in “spontaneous” keloids? Ann Dermatol Venereol 133:501

    PubMed  CAS  Google Scholar 

  2. Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4:19–24

    Article  PubMed  CAS  Google Scholar 

  3. Beanes SR, Hu FY, Soo C et al (2002) Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition. Plast Reconstr Surg 109:160–170

    Article  PubMed  Google Scholar 

  4. Soo C, Hu FY, Zhang X et al (2000) Differential expression of fibromodulin, a transforming growth factor-beta modulator, in fetal skin development and scarless repair. Am J Pathol 157:423–433

    PubMed  CAS  Google Scholar 

  5. Liechty KW, Adzick NS, Crombleholme TM (2000) Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12:671–676

    Article  PubMed  CAS  Google Scholar 

  6. Liechty KW, Crombleholme TM, Cass DL et al (1998) Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res 77:80–84

    Article  PubMed  CAS  Google Scholar 

  7. Estes JM, Vande Berg JS, Adzick NS et al (1994) Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation 56:173–181

    Article  PubMed  CAS  Google Scholar 

  8. Jennings RW, Adzick NS, Longaker MT et al (1991) Ontogeny of fetal sheep polymorphonuclear leukocyte phagocytosis. J Pediatr Surg 26:853–855

    Article  PubMed  CAS  Google Scholar 

  9. Whitby DJ, Ferguson MW (1991) Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol 147:207–215

    Article  PubMed  CAS  Google Scholar 

  10. Stelnicki EJ, Arbeit J, Cass DL et al (1998) Modulation of the human homeobox genes PRX-2 and HOXB13 in scarless fetal wounds. J Invest Dermatol 111:57–63

    Article  PubMed  CAS  Google Scholar 

  11. Mignatti P (1995) Extracellular matrix remodeling by metalloproteinases and plasminogen activators. Kidney Int Suppl 49:S12–S14

    PubMed  CAS  Google Scholar 

  12. Young PK, Grinnell F (1994) Metalloproteinase activation cascade after burn injury: a longitudinal analysis of the human wound environment. J Invest Dermatol 103:660–664

    Article  PubMed  CAS  Google Scholar 

  13. McGrouther DA (1994) Hypertrophic or keloid scars? Eye 8(Pt 2):200–203

    PubMed  Google Scholar 

  14. Murray JC (1994) Keloids and hypertrophic scars. Clin Dermatol 12:27–37

    Article  PubMed  CAS  Google Scholar 

  15. Bayat A, Arscott G, Ollier WE et al (2004) Description of site-specific morphology of keloid phenotypes in an Afrocaribbean population. Br J Plast Surg 57:122–133

    Article  PubMed  CAS  Google Scholar 

  16. Brissett AE, Sherris DA (2001) Scar contractures, hypertrophic scars, and keloids. Facial Plast Surg 17:263–272

    Article  PubMed  CAS  Google Scholar 

  17. Lindsey WH, Davis PT (1997) Facial keloids. A 15-year experience. Arch Otolaryngol Head Neck Surg 123:397–400

    PubMed  CAS  Google Scholar 

  18. Al-Attar A, Mess S, Thomassen JM et al (2006) Keloid pathogenesis and treatment. Plast Reconstr Surg 117:286–300

    Article  PubMed  CAS  Google Scholar 

  19. Schierle HP, Scholz D, Lemperle G (1997) Elevated levels of testosterone receptors in keloid tissue: an experimental investigation. Plast Reconstr Surg 100:390–395 discussion 396

    Article  PubMed  CAS  Google Scholar 

  20. Cosman B, Crikelair F, Ju MC, Gaulin JC, Lattes R (1961) The surgical treatment of keloids. Plast Reconstr Surg 27:335–345

    Article  Google Scholar 

  21. Oluwasanmi JO (1974) Keloids in the African. Clin Plast Surg 1:179–195

    PubMed  CAS  Google Scholar 

  22. Fong EP, Chye LT, Tan WT (1999) Keloids: time to dispel the myths? Plast Reconstr Surg 104:1199–1202

    PubMed  CAS  Google Scholar 

  23. McDonald CJ (1988) Structure and function of the skin. Are there differences between black and white skin? Dermatol Clin 6:343–347

    PubMed  CAS  Google Scholar 

  24. Bloom D (1956) Heredity of keloids. N Y State Med J 56:511–519

    CAS  Google Scholar 

  25. Kelly AP (2004) Medical and surgical therapies for keloids. Dermatol Ther 17:212–218

    Article  PubMed  Google Scholar 

  26. Bayat A, Bock O, Mrowietz U et al (2002) Genetic susceptibility to keloid disease and transforming growth factor beta 2 polymorphisms. Br J Plast Surg 55:283–286

    Article  PubMed  CAS  Google Scholar 

  27. Bayat A, Bock O, Mrowietz U et al (2003) Genetic susceptibility to keloid disease and hypertrophic scarring: transforming growth factor beta1 common polymorphisms and plasma levels. Plast Reconstr Surg 111:535–543 discussion 544–536

    Article  PubMed  Google Scholar 

  28. Bayat A, Bock O, Mrowietz U et al (2004) Genetic susceptibility to keloid disease: transforming growth factor beta receptor gene polymorphisms are not associated with keloid disease. Exp Dermatol 13:120–124

    Article  PubMed  CAS  Google Scholar 

  29. Bayat A, Walter JM, Bock O et al (2005) Genetic susceptibility to keloid disease: mutation screening of the TGFbeta3 gene. Br J Plast Surg 58:914–921

    Article  PubMed  CAS  Google Scholar 

  30. Brown JJ, Ollier W, Arscott G et al (2008) Genetic susceptibility to keloid scarring: SMAD gene SNP frequencies in Afro-Caribbeans. Exp Dermatol 17:610–613

    Article  PubMed  CAS  Google Scholar 

  31. Yan X, Gao JH, Chen Y et al (2007) Preliminary linkage analysis and mapping of keloid susceptibility locus in a Chinese pedigree. Zhonghua Zheng Xing Wai Ke Za Zhi 23:32–35

    PubMed  Google Scholar 

  32. Lu WS, Wang JF, Yang S et al (2008) Association of HLA-DQA1 and DQB1 alleles with keloids in Chinese Hans. J Dermatol Sci 52:108–117

    Article  PubMed  CAS  Google Scholar 

  33. Rossi A, Bozzi M (1989) HLA and keloids: antigenic frequency and therapeutic response. G Ital Dermatol Venereol 124:341–344

    PubMed  CAS  Google Scholar 

  34. Marneros AG, Norris JE, Olsen BR et al (2001) Clinical genetics of familial keloids. Arch Dermatol 137:1429–1434

    PubMed  CAS  Google Scholar 

  35. Marneros AG, Norris JE, Watanabe S et al (2004) Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol 122:1126–1132

    Article  PubMed  CAS  Google Scholar 

  36. Goeminne L (1968) A new probably X-linked inherited syndrome: congenital muscular torticollis, multiple keloids cryptorchidism and renal dysplasia. Acta Genet Med Gemellol (Roma) 17:439–467

    CAS  Google Scholar 

  37. Hendrix JD Jr, Greer KE (1996) Rubinstein-Taybi syndrome with multiple flamboyant keloids. Cutis 57:346–348

    PubMed  Google Scholar 

  38. Warner DR, Bhattacherjee V, Yin X et al (2004) Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem Biophys Res Commun 324:70–76

    Article  PubMed  CAS  Google Scholar 

  39. Zuffardi O, Fraccaro M (1982) Gene mapping and serendipity. The locus for torticollis, keloids, cryptorchidism and renal dysplasia (31430, Mckusick) is at Xq28, distal to the G6PD locus. Hum Genet 62:280–281

    Article  PubMed  CAS  Google Scholar 

  40. Kazeem AA (1988) The immunological aspects of keloid tumor formation. J Surg Oncol 38:16–18

    Article  PubMed  CAS  Google Scholar 

  41. Kischer CW, Shetlar MR, Shetlar CL et al (1983) Immunoglobulins in hypertrophic scars and keloids. Plast Reconstr Surg 71:821–825

    Article  PubMed  CAS  Google Scholar 

  42. Santucci M, Borgognoni L, Reali UM et al (2001) Keloids and hypertrophic scars of Caucasians show distinctive morphologic and immunophenotypic profiles. Virchows Arch 438:457–463

    Article  PubMed  CAS  Google Scholar 

  43. Niessen FB, Schalkwijk J, Vos H et al (2004) Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells. J Pathol 202:121–129

    Article  PubMed  Google Scholar 

  44. Smith CJ, Smith JC, Finn MC (1987) The possible role of mast cells (allergy) in the production of keloid and hypertrophic scarring. J Burn Care Rehabil 8:126–131

    Article  PubMed  CAS  Google Scholar 

  45. Eishi K, Bae SJ, Ogawa F et al (2003) Silicone gel sheets relieve pain and pruritus with clinical improvement of keloid: possible target of mast cells. J Dermatolog Treat 14:248–252

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Q, Oh CK, Messadi DV et al (2006) Hypoxia-induced HIF-1 alpha accumulation is augmented in a co-culture of keloid fibroblasts and human mast cells: involvement of ERK1/2 and PI-3K/Akt. Exp Cell Res 312:145–155

    Article  PubMed  CAS  Google Scholar 

  47. Rapp SR, Feldman SR, Exum ML et al (1999) Psoriasis causes as much disability as other major medical diseases. J Am Acad Dermatol 41:401–407

    Article  PubMed  CAS  Google Scholar 

  48. Sheffield CG 3rd, Irons GB, Mucha P Jr et al (1988) Physical and psychological outcome after burns. J Burn Care Rehabil 9:172–177

    Article  PubMed  Google Scholar 

  49. Van Loey NE, Van Son MJ (2003) Psychopathology and psychological problems in patients with burn scars: epidemiology and management. Am J Clin Dermatol 4:245–272

    Article  PubMed  Google Scholar 

  50. Bock O, Schmid-Ott G, Malewski P et al (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297:433–438

    Article  PubMed  Google Scholar 

  51. Lane JE, Waller JL, Davis LS (2005) Relationship between age of ear piercing and keloid formation. Pediatrics 115:1312–1314

    Article  PubMed  Google Scholar 

  52. Teofoli P, Motoki K, Lotti TM et al (1997) Propiomelanocortin (POMC) gene expression by normal skin and keloid fibroblasts in culture: modulation by cytokines. Exp Dermatol 6:111–115

    Article  PubMed  CAS  Google Scholar 

  53. Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91:439–442

    Article  PubMed  CAS  Google Scholar 

  54. Babu M, Diegelmann R, Oliver N (1989) Fibronectin is overproduced by keloid fibroblasts during abnormal wound healing. Mol Cell Biol 9:1642–1650

    PubMed  CAS  Google Scholar 

  55. Friedman DW, Boyd CD, Mackenzie JW et al (1993) Regulation of collagen gene expression in keloids and hypertrophic scars. J Surg Res 55:214–222

    Article  PubMed  CAS  Google Scholar 

  56. Kischer CW, Hendrix MJ (1983) Fibronectin (FN) in hypertrophic scars and keloids. Cell Tissue Res 231:29–37

    PubMed  CAS  Google Scholar 

  57. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  PubMed  CAS  Google Scholar 

  58. Eckes B, Zigrino P, Kessler D et al (2000) Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol 19:325–332

    Article  PubMed  CAS  Google Scholar 

  59. Ravanti L, Kahari VM (2000) Matrix metalloproteinases in wound repair (review). Int J Mol Med 6:391–407

    PubMed  CAS  Google Scholar 

  60. Declerk P (1993) Plasminogen activator inhibitor-1: biochemical, structural and functional studies. Verh K Acad Geneeskd Belg 55:457–473

    Google Scholar 

  61. Lyons RM, Gentry LE, Purchio AF et al (1990) Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 110:1361–1367

    Article  PubMed  CAS  Google Scholar 

  62. Tuan TL, Zhu JY, Sun B et al (1996) Elevated levels of plasminogen activator inhibitor-1 may account for the altered fibrinolysis by keloid fibroblasts. J Invest Dermatol 106:1007–1011

    Article  PubMed  CAS  Google Scholar 

  63. Tuan TL, Wu H, Huang EY et al (2003) Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. Am J Pathol 162:1579–1589

    PubMed  CAS  Google Scholar 

  64. Zhang Q, Wu Y, Ann DK et al (2003) Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts. J Invest Dermatol 121:1005–1012

    Article  PubMed  CAS  Google Scholar 

  65. Eble JA (2001) The molecular basis of integrin-extracellular matrix interactions. Osteoarthritis Cartilage 9(Suppl A):S131–S140

    PubMed  Google Scholar 

  66. Szulgit G, Rudolph R, Wandel A et al (2002) Alterations in fibroblast alpha1beta1 integrin collagen receptor expression in keloids and hypertrophic scars. J Invest Dermatol 118:409–415

    Article  PubMed  CAS  Google Scholar 

  67. Blume-Peytavi U, Geilen CC, Sommer C et al (1997) The phospholipid analogue hexadecylphosphocholine (HePC) inhibits proliferation of keloid fibroblasts in vitro and modulates their fibronectin and integrin synthesis. Arch Dermatol Res 289:164–169

    Article  PubMed  CAS  Google Scholar 

  68. Uitto J, Perejda AJ, Abergel RP et al (1985) Altered steady-state ratio of type I/III procollagen mRNAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci U S A 82:5935–5939

    Article  PubMed  CAS  Google Scholar 

  69. Abergel RP, Pizzurro D, Meeker CA et al (1985) Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. J Invest Dermatol 84:384–390

    Article  PubMed  CAS  Google Scholar 

  70. Russell SB, Trupin KM, Rodriguez-Eaton S et al (1988) Reduced growth-factor requirement of keloid-derived fibroblasts may account for tumor growth. Proc Natl Acad Sci U S A 85:587–591

    Article  PubMed  CAS  Google Scholar 

  71. Kikuchi K, Kadono T, Takehara K (1995) Effects of various growth factors and histamine on cultured keloid fibroblasts. Dermatology 190:4–8

    PubMed  CAS  Google Scholar 

  72. Babu M, Diegelmann R, Oliver N (1992) Keloid fibroblasts exhibit an altered response to TGF-beta. J Invest Dermatol 99:650–655

    Article  PubMed  CAS  Google Scholar 

  73. Bettinger DA, Yager DR, Diegelmann RF et al (1996) The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg 98:827–833

    Article  PubMed  CAS  Google Scholar 

  74. Lee TY, Chin GS, Kim WJ et al (1999) Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Ann Plast Surg 43:179–184

    Article  PubMed  CAS  Google Scholar 

  75. Haisa M, Okochi H, Grotendorst GR (1994) Elevated levels of PDGF alpha receptors in keloid fibroblasts contribute to an enhanced response to PDGF. J Invest Dermatol 103:560–563

    Article  PubMed  CAS  Google Scholar 

  76. Wu Y, Zhang Q, Ann DK et al (2004) Increased vascular endothelial growth factor may account for elevated level of plasminogen activator inhibitor-1 via activating ERK1/2 in keloid fibroblasts. Am J Physiol Cell Physiol 286:C905–C912

    Article  PubMed  CAS  Google Scholar 

  77. Zhang GY, Yi CG, Li X et al (2008) Inhibition of vascular endothelial growth factor expression in keloid fibroblasts by vector-mediated vascular endothelial growth factor shRNA: a therapeutic potential strategy for keloid. Arch Dermatol Res 300:177–184

    Article  PubMed  CAS  Google Scholar 

  78. Ghazizadeh M (2007) Essential role of IL-6 signaling pathway in keloid pathogenesis. J Nippon Med Sch 74:11–22

    Article  PubMed  CAS  Google Scholar 

  79. Liechty KW, Kim HB, Adzick NS et al (2000) Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg 35:866–872 discussion 872–863

    Article  PubMed  CAS  Google Scholar 

  80. Peranteau WH, Zhang L, Muvarak N et al (2008) IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol 128:1852–1860

    Article  PubMed  CAS  Google Scholar 

  81. Chodon T, Sugihara T, Igawa HH et al (2000) Keloid-derived fibroblasts are refractory to Fas-mediated apoptosis and neutralization of autocrine transforming growth factor-beta1 can abrogate this resistance. Am J Pathol 157:1661–1669

    PubMed  CAS  Google Scholar 

  82. Ishihara H, Yoshimoto H, Fujioka M et al (2000) Keloid fibroblasts resist ceramide-induced apoptosis by overexpression of insulin-like growth factor I receptor. J Invest Dermatol 115:1065–1071

    Article  PubMed  CAS  Google Scholar 

  83. Sayah DN, Soo C, Shaw WW et al (1999) Downregulation of apoptosis-related genes in keloid tissues. J Surg Res 87:209–216

    Article  PubMed  CAS  Google Scholar 

  84. Ladin DA, Hou Z, Patel D et al (1998) p53 and apoptosis alterations in keloids and keloid fibroblasts. Wound Repair Regen 6:28–37

    Article  PubMed  CAS  Google Scholar 

  85. Messadi DV, Doung HS, Zhang Q et al (2004) Activation of NFkappaB signal pathways in keloid fibroblasts. Arch Dermatol Res 296:125–133

    Article  PubMed  CAS  Google Scholar 

  86. Funayama E, Chodon T, Oyama A et al (2003) Keratinocytes promote proliferation and inhibit apoptosis of the underlying fibroblasts: an important role in the pathogenesis of keloid. J Invest Dermatol 121:1326–1331

    Article  PubMed  CAS  Google Scholar 

  87. Lim IJ, Phan TT, Bay BH et al (2002) Fibroblasts cocultured with keloid keratinocytes: normal fibroblasts secrete collagen in a keloidlike manner. Am J Physiol Cell Physiol 283:C212–C222

    PubMed  CAS  Google Scholar 

  88. Lim IJ, Phan TT, Song C et al (2001) Investigation of the influence of keloid-derived keratinocytes on fibroblast growth and proliferation in vitro. Plast Reconstr Surg 107:797–808

    Article  PubMed  CAS  Google Scholar 

  89. Lim CP, Phan TT, Lim IJ et al (2008) Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. J Invest Dermatol 129(4):851–861

    Article  PubMed  CAS  Google Scholar 

  90. Roberts AB, Sporn MB, Clark RF (1996) The molecular and cellular biology of wound repair. Plenum, New York

    Google Scholar 

  91. Roberts AB, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8:1–9

    PubMed  CAS  Google Scholar 

  92. Van Obberghen-Schilling E, Roche NS, Flanders KC et al (1988) Transforming growth factor beta 1 positively regulates its own expression in normal and transformed cells. J Biol Chem 263:7741–7746

    PubMed  Google Scholar 

  93. Wakefield LM, Smith DM, Flanders KC et al (1988) Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences. J Biol Chem 263:7646–7654

    PubMed  CAS  Google Scholar 

  94. Kojima S, Nara K, Rifkin DB (1993) Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Biol 121:439–448

    Article  PubMed  CAS  Google Scholar 

  95. Miyazono K, Ichijo H, Heldin CH (1993) Transforming growth factor-beta: latent forms, binding proteins and receptors. Growth Factors 8:11–22

    Article  PubMed  CAS  Google Scholar 

  96. Yamaguchi Y, Mann DM, Ruoslahti E (1990) Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346:281–284

    Article  PubMed  CAS  Google Scholar 

  97. Fava RA, McClure DB (1987) Fibronectin-associated transforming growth factor. J Cell Physiol 131:184–189

    Article  PubMed  CAS  Google Scholar 

  98. Murphy-Ullrich JE, Schultz-Cherry S, Hook M (1992) Transforming growth factor-beta complexes with thrombospondin. Mol Biol Cell 3:181–188

    PubMed  CAS  Google Scholar 

  99. Lin HY, Moustakas A (1994) TGF-beta receptors: structure and function. Cell Mol Biol (Noisy-le-grand) 40:337–349

    CAS  Google Scholar 

  100. Andres JL, Stanley K, Cheifetz S et al (1989) Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta. J Cell Biol 109:3137–3145

    Article  PubMed  CAS  Google Scholar 

  101. Fujiwara M, Muragaki Y, Ooshima A (2005) Upregulation of transforming growth factor-beta1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity. Arch Dermatol Res 297:161–169

    Article  PubMed  CAS  Google Scholar 

  102. Chin GS, Liu W, Peled Z et al (2001) Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 108:423–429

    Article  PubMed  CAS  Google Scholar 

  103. Ghahary A, Shen YJ, Scott PG et al (1993) Enhanced expression of mRNA for transforming growth factor-beta, type I and type III procollagen in human post-burn hypertrophic scar tissues. J Lab Clin Med 122:465–473

    PubMed  CAS  Google Scholar 

  104. Zhang K, Garner W, Cohen L et al (1995) Increased types I and III collagen and transforming growth factor-beta 1 mRNA and protein in hypertrophic burn scar. J Invest Dermatol 104:750–754

    Article  PubMed  CAS  Google Scholar 

  105. Schmid P, Itin P, Cherry G et al (1998) Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol 152:485–493

    PubMed  CAS  Google Scholar 

  106. Shah M, Foreman DM, Ferguson MW (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 339:213–214

    Article  PubMed  CAS  Google Scholar 

  107. Gary-Bobo M, Nirde P, Jeanjean A et al (2007) Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem 14:2945–2953

    Article  PubMed  CAS  Google Scholar 

  108. Thielitz A, Vetter RW, Schultze B et al (2008) Inhibitors of dipeptidyl peptidase IV-like activity mediate antifibrotic effects in normal and keloid-derived skin fibroblasts. J Invest Dermatol 128:855–866

    Article  PubMed  CAS  Google Scholar 

  109. Bock O, Yu H, Zitron S et al (2005) Studies of transforming growth factors beta 1–3 and their receptors I and II in fibroblast of keloids and hypertrophic scars. Acta Dermatol Venereol 85:216–220

    CAS  Google Scholar 

  110. Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 108(Pt 3):985–1002

    PubMed  CAS  Google Scholar 

  111. Abdollah S, Macias-Silva M, Tsukazaki T et al (1997) TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272:27678–27685

    Article  PubMed  CAS  Google Scholar 

  112. Nakao A, Imamura T, Souchelnytskyi S et al (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. Embo J 16:5353–5362

    Article  PubMed  CAS  Google Scholar 

  113. Hayashi H, Abdollah S, Qiu Y et al (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89:1165–1173

    Article  PubMed  CAS  Google Scholar 

  114. Imamura T, Takase M, Nishihara A et al (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389:622–626

    Article  PubMed  CAS  Google Scholar 

  115. Dennler S, Goumans MJ, ten Dijke P (2002) Transforming growth factor beta signal transduction. J Leukoc Biol 71:731–740

    PubMed  CAS  Google Scholar 

  116. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    Article  PubMed  CAS  Google Scholar 

  117. Phan TT, Lim IJ, Aalami O et al (2005) Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions. J Pathol 207:232–242

    Article  PubMed  CAS  Google Scholar 

  118. Tsujita-Kyutoku M, Uehara N, Matsuoka Y et al (2005) Comparison of transforming growth factor-beta/Smad signaling between normal dermal fibroblasts and fibroblasts derived from central and peripheral areas of keloid lesions. In Vivo 19:959–963

    PubMed  CAS  Google Scholar 

  119. Khoo YT, Ong CT, Mukhopadhyay A et al (2006) Upregulation of secretory connective tissue growth factor (CTGF) in keratinocyte-fibroblast coculture contributes to keloid pathogenesis. J Cell Physiol 208:336–343

    Article  PubMed  CAS  Google Scholar 

  120. Gao Z, Wang Z, Shi Y et al (2006) Modulation of collagen synthesis in keloid fibroblasts by silencing Smad2 with siRNA. Plast Reconstr Surg 118:1328–1337

    Article  PubMed  CAS  Google Scholar 

  121. Yu H, Bock O, Bayat A et al (2006) Decreased expression of inhibitory SMAD6 and SMAD7 in keloid scarring. J Plast Reconstr Aesthet Surg 59:221–229

    Article  PubMed  Google Scholar 

  122. Wang B, Hao J, Jones SC et al (2002) Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol 282:H1685–H1696

    PubMed  CAS  Google Scholar 

  123. Dong C, Zhu S, Wang T et al (2002) Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci U S A 99:3908–3913

    Article  PubMed  CAS  Google Scholar 

  124. Takagawa S, Lakos G, Mori Y et al (2003) Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma. J Invest Dermatol 121:41–50

    Article  PubMed  CAS  Google Scholar 

  125. Huang M, Sharma S, Zhu LX et al (2002) IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J Clin Invest 109:931–937

    PubMed  CAS  Google Scholar 

  126. Kopp J, Preis E, Said H et al (2005) Abrogation of transforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 280:21570–21576

    Article  PubMed  CAS  Google Scholar 

  127. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  PubMed  CAS  Google Scholar 

  128. Yu L, Hebert MC, Zhang YE (2002) TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. Embo J 21:3749–3759

    Article  PubMed  CAS  Google Scholar 

  129. Bhattacharyya S, Ishida W, Wu M et al (2009) A non-Smad mechanism of fibroblast activation by transforming growth factor-beta via c-Abl and Egr-1: selective modulation by imatinib mesylate. Oncogene 28(10):1285–1297

    Article  PubMed  CAS  Google Scholar 

  130. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  131. Tsukazaki T, Chiang TA, Davison AF et al (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779–791

    Article  PubMed  CAS  Google Scholar 

  132. Di Guglielmo GM, Le Roy C, Goodfellow AF et al (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410–421

    Article  PubMed  CAS  Google Scholar 

  133. Smith JC, Boone BE, Opalenik SR et al (2008) Gene profiling of keloid fibroblasts shows altered expression in multiple fibrosis-associated pathways. J Invest Dermatol 128:1298–1310

    Article  PubMed  CAS  Google Scholar 

  134. Satish L, Lyons-Weiler J, Hebda PA et al (2006) Gene expression patterns in isolated keloid fibroblasts. Wound Repair Regen 14:463–470

    Article  PubMed  Google Scholar 

  135. Chen W, Fu X, Sun X et al (2003) Analysis of differentially expressed genes in keloids and normal skin with cDNA microarray. J Surg Res 113:208–216

    Article  PubMed  CAS  Google Scholar 

  136. Seifert O, Bayat A, Geffers R et al (2008) Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen 16:254–265

    Article  PubMed  Google Scholar 

  137. Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  138. Ehrlich HP, Desmouliere A, Diegelmann RF et al (1994) Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 145:105–113

    PubMed  CAS  Google Scholar 

  139. Itoh S, Itoh F, Goumans MJ et al (2000) Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem 267:6954–6967

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Seifert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, O., Mrowietz, U. Keloid scarring: bench and bedside. Arch Dermatol Res 301, 259–272 (2009). https://doi.org/10.1007/s00403-009-0952-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-0952-8

Keywords

Navigation