Skip to main content

Advertisement

Log in

Rheology and microstructural studies of regenerated silk fibroin solutions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Regenerated silk fibroin solutions (RSF) are produced by dissolving degummed silk fibers in water. We have observed that RSF solutions at a concentration less than 15 % by weight exhibit an unusual gel-like response in conventional shear rheology measurements. At higher concentrations, the response is predominantly viscous (or liquid-like). We have probed this counterintuitive behavior of silk fibroin solutions by using microrheology, and interfacial rheometry. Scattering techniques were also used to understand the microstructure of RSF solutions as a function of the concentration. Our studies suggest that the gel-like response of the RSF solution may result from the formation of an interfacial film at the air–solution interface, which dominates the bulk rheological response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baravian C, Benbelkacem G, Caton F (2007) Unsteady rheometry: can we characterize weak gels with a controlled stress rheometer? Rheol Acta 46:577–581. doi: 10.1016/j.polymer.2007.04.019

    Article  CAS  Google Scholar 

  • Crocker J, Grier D (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interf Sci 179:298–310

    Article  CAS  Google Scholar 

  • Erni P, Fischer P, Windhab E, Kusnezov V, Stettin H, Lauger J (2003) Stress-and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev Sci Instrum 74(11):4916–4924. doi: 10.1063/1.1614433

    Article  CAS  Google Scholar 

  • Ferry J (ed) (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Greving I, Dicko C, erry A, Callow P, Vollrath F (2010) Small-angle neutron scattering of native and reconstituted silk fibroin. Soft Matter 6:4389–4395. doi: 10.1039/c0sm00108b

    Article  CAS  Google Scholar 

  • Holland C, Terry A, Porter D, Vollrath F (2007) Natural and unnatural silks. Polymer 48:3388–3392. doi: 10.1007/s00397-006-0135-x

    Article  CAS  Google Scholar 

  • Hossain K, Nemoto N, Magoshi J (1999) Rheological study on aqueous solutions of silk fibroin extracted from the middle division of Bombyx mori silkworm. J Soc Rheol Jpn 27(2):129–130. doi: 10.1678/rheology.27.129

    Article  CAS  Google Scholar 

  • Ikeda S, Nishinari K (2001) On solid-like rheological behaviors of globular protein solutions. Food Hydrocoll 15:401–406

    Article  CAS  Google Scholar 

  • Inoue H, Matsumoto T (1996) Viscoelastic characterization of solid-like structure in aqueous colloids of globular proteins. Colloids Surf A Physicochem Eng Asp 109:89–96

    Article  CAS  Google Scholar 

  • Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a highmolecular mass elementary unit consisting of H-chain, L-chain and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40,517–40,528

    CAS  Google Scholar 

  • Kragel J, Derkatch S, Miller R (2008) Interfacial shear rheology of protein-surfactant layers. Adv Colloid Interface Sci 144:38–53. doi: 10.1016/j.cis.2008.08.010

    Article  CAS  Google Scholar 

  • Lindner P, Zemb T (eds) (2002) Neutrons, X-rays and light: scattering methods applied to soft condensed matter. Elsevier

  • Matsumoto A, Chen J, Collette A, Kim U, Altman G, Cebe P, Kaplan D (2006) Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B 110(43): 21,630–21,638

    Article  CAS  Google Scholar 

  • Mo C, Holland C, Porter D, Shao Z, Vollrath F (2009) Concentration state dependence of the rheological and structural properties of reconstituted silk. Biomacromolecules 10:2724–2728. doi: 10.1021/bm900452u

    Article  CAS  Google Scholar 

  • Muller W, Samuelson L, Fossey S, Kaplan D (1993) Formation and characterization of langmuir silk films. Langmuir 9:1857–1861

    Article  CAS  Google Scholar 

  • Nagarkar S, Patil A, Lele A, Bhat S, Bellare J, Mashelkar R (2009) Some mechanistic insights into the gelation of regenerated silk fibroin sol. Ind Eng Chem Res 48:8014–8023. doi: 10.1021/ie801723f

    Article  CAS  Google Scholar 

  • Ochi A, Hossain K, Magoshi J, Nemoto N (2002) Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromolecules 3:1187–1196. doi: 10.1021/bm020056g

    Article  CAS  Google Scholar 

  • Oh S, Slattery J (1978) Disk and biconical interfacial rheometers. J Colloid Interfacial Sci 67(3):516–525

    Article  CAS  Google Scholar 

  • Omenetto F, Kaplan D (2010) New opportunities for an ancient material. Science 329:528–531

    Article  CAS  Google Scholar 

  • Raghu A, Somashekar R, Ananthamurthy S (2007) The crystal structure of Bombyx mori silk fibroin at air-water interface. J Polym Sci B Polym Phys 45:2555–2562

    Article  CAS  Google Scholar 

  • Sharma V, Jaishankar A, Wang Y, McKinley G (2011) Interfacial viscoelasticity, yielding and creep ringing of globular protein-surfactant mixtures. Soft Matter 7:5150–5160. doi: 10.1039/C1SM05399J

    Article  CAS  Google Scholar 

  • Shotton E, Wibberley K, Warburton B, David S, Finlay P (1971) A versatile surface rheometer. Rheol Acta 10:142–152

    Article  Google Scholar 

  • Vandebril S, Franck A, Fuller G, Moldenaers P, Vermant J (2010) A double wall-ring geometry for interfacial shear rheometry. Rheol Acta 49:131–144. doi: 10.1007/s00397-009-0407-3

    Article  CAS  Google Scholar 

  • Vepari C, Kaplan D (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007. doi: 10.1016/j.progpolymsci.2007.05.013

    Article  CAS  Google Scholar 

  • Waigh T (2005) Microrheology of complex fluids. Rep Prog Phys 68:685–742

    Article  Google Scholar 

  • Wang L, Xie H, Qiao X, Goffin A, Hodgkinson T, Yuan X, Sun K, Fuller G (2012) Interfacial rheology of natural silk fibroin at air/water and oil/water interfaces. Langmuir 28:459–467. doi: 10.1021/la2041373

    Article  Google Scholar 

  • Yang Y, Dicko C, Bain C, Gong Z, Jacobs R, Shao Z, Terry A, Vollrath F (2012) Behavior of silk protein at the air-water interface. Soft Matter 8:9705–9712

    Article  CAS  Google Scholar 

  • Zhou C, Confalonieri F, Jacquet M, Perasso R, Li Z, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44:119–122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AN thanks Dr. V. Aswal (BARC) for help with the SANS experiments. We thank CSRTI for generous supplies of B. mori cocoons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuya Nisal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nisal, A., Kalelkar, C., Bellare, J. et al. Rheology and microstructural studies of regenerated silk fibroin solutions. Rheol Acta 52, 833–840 (2013). https://doi.org/10.1007/s00397-013-0723-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0723-5

Keywords

Navigation