Skip to main content
Log in

Highly efficient removal of copper ions from water using poly(acrylic acid)-grafted chitosan adsorbent

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Biodegradable and ultrahigh content grafted chitosan-g-poly(acrylic acid) powder was successfully synthesized in a homogeneous system and used as adsorbents for the removal of Cu(II) in aqueous solution. The copolymer was characterized by various techniques. The fundamental adsorption behaviors of the material were studied. The adsorption isotherm was well fitted with Langmuir equation, while the adsorption kinetics preferred to be described the pseudo-second order equation. The maximum adsorption capacity obtained from the Langmuir model was 210.13 mg/g, indicating that the adsorption capacity of chitosan was enhanced remarkably after grafting poly(acrylic acid). Moreover, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) have been used to investigate the adsorption mechanisms at molecular levels, which revealed that carboxyl groups are facile to form bidentate carboxylates with metal ions. Thus, the environment-friendly copolymer will be a promising candidate for application in removal of heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beppu MM, Arruda EJ, Vieira RS, Santos NN (2004) Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. J Member Sci 240(1–2):227–235

    Article  CAS  Google Scholar 

  2. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

    Article  CAS  Google Scholar 

  3. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191

    Article  CAS  Google Scholar 

  4. Pal A, Das D, Sarkar AK, Ghorai S, Das R, Pal S (2015) Synthesis of glycogen and poly (acrylic acid)-based graft copolymers via ATRP and its application for selective removal of Pb2+ ions from aqueous solution. Eur Polym J 66:33–46

    Article  CAS  Google Scholar 

  5. Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C (2016) Efficient Pb(II) removal using sodium alginate–carboxymethylcellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409

    Article  CAS  Google Scholar 

  6. Jiang TD (2007) Chitosan. Chemical Industry Press, Beijing

    Google Scholar 

  7. Peng S, Meng H, Ouyang Y, Chang J (2014) Nanoporous magnetic cellulose−chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind Eng Chem Res 53(6):2106–2113

    Article  CAS  Google Scholar 

  8. Dai J, Han Y, Yang H, Cheng R (2010) Simple method for preparation of chitosan/poly(acrylic acid) blending hydrogelbeads and adsorption of copper(II) from aqueous solutions. Chem Eng J 165(1):240–249

    Article  CAS  Google Scholar 

  9. Song Q, Wang C, Zhang Z, Gao J (2014) Adsorption of Cu(II) and Ni(II) using a novel xanthated carboxymethyl chitosan. Separ Sci Technol 49(8):1235–1243

    Article  CAS  Google Scholar 

  10. Wang X, Zheng Y, Wang A (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J Hazard Mater 168(2–3):970–977

    Article  CAS  Google Scholar 

  11. Huang M, Jin X, Li Y, Fang Y (2006) Syntheses and characterization of novel pH-sensitive graft copolymers of maleoylchitosan and poly(acrylic acid). React Funct Polym 66(10):1041–1046

    Article  CAS  Google Scholar 

  12. Zheng Y, Huang D, Wang A (2011) Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery. Anal Chim Acta 687:193–200

    Article  CAS  Google Scholar 

  13. Ren Y, Li N, Feng J, Luan T, Wen Q, Li Z, Zhang M (2012) Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4. J Colloid Interface Sci 367(1):415–421

    Article  CAS  Google Scholar 

  14. Kyzass GZ, Siafaka PI, Lambropoulou DA, Lazaridis NK, Bikiaris DN (2014) Poly(itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd(II) uptake. Langmuir 30(1):120–131

    Article  Google Scholar 

  15. Al-Karawi AJM, Al-Qaisi ZHJ, Abdullah HI, Al-Heetimi DTA (2011) Synthesis, characterization of acrylamide grafted chitosan and its use in removal of copper(II) ions from water. Carbohydr Polym 83(2):495–500

    Article  CAS  Google Scholar 

  16. Chen Y, Tan H (2006) Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer. Carbohydr Res 341(7):887–896

    Article  CAS  Google Scholar 

  17. El-Khaiary MI, Malash GF (2011) Common data analysis error in batch adsorption studies. Hydrometallurgy 105(3–4):314–320

    Article  CAS  Google Scholar 

  18. Yan H, Dai J, Yang Z, Yang H, Cheng R (2011) Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. Chem Eng J 174(2–3):586–594

    Article  CAS  Google Scholar 

  19. Zhang S, Zhou Y, Nie W, Song L, Zhang T (2012) Preparation of uniform magnetic chitosan microcapsules and their application in adsorbing copper ion(II) and chromium ion(III). Ind Eng Chem Res 51(43):14099–14106

    Article  CAS  Google Scholar 

  20. Yan H, Yang L, Yang Z, Yang H, Li A, Cheng R (2012) Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J Hazard Mater 229-230:371–380

    Article  CAS  Google Scholar 

  21. Xu J, Xu X, Zhao H, Luo G (2013) Microfluidic preparation of chitosan microspheres with enhanced adsorption performance of copper(II). Sensor Actuat B-Chem 183:201–210

    Article  CAS  Google Scholar 

  22. Ong S-T, Tay EH, Ha S-T, Lee W-N, Keng P-S (2009) Equilibrium and continuous flow studies on the sorption of Congo Red using ethylenediamine modified rice hulls. Int J Phys Sci 4(11):683–690

    CAS  Google Scholar 

  23. Liu X, Zhang L (2015) Removal of phosphate anions using the modified chitosan bead: adsorption kinetic, isotherm and mechanism studies. Powder Technol 277:112–119

    Article  CAS  Google Scholar 

  24. Malash GF, El-Khaiary MI (2010) Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem Eng J 163(3):256–263

    Article  CAS  Google Scholar 

  25. Rocha LS, Lopes CB, Borges JA, Duarte AC, Pereira E (2013) Valuation of unmodified rice husk waste as an eco-friendly sorbent to remove mercury: a study using environmental realistic concentrations. Water Air Soil Poll 224(7):1599

    Article  Google Scholar 

  26. Deacon GB, Philips RJ (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33(3):227–250

    Article  CAS  Google Scholar 

  27. Spinner E (1967) Vibration-spectral studies of carboxylate ions. Part III. Sodium formate, HCO2Na and DCO2Na; Raman-spectral depolarisation ratios in aqueous solution, and band splitting in the solid-state infrared spectrum. J Chem Soc B 9:879–885

    Article  Google Scholar 

  28. Dietrich PM, Hennig A, Holzweber M, Lippitz A, Unger WES (2014) Surface analytical study of poly(acrylic acid)-grafted microparticles (beads): characterization, chemical derivatization, and quantification of surface carboxyl groups. J Phys Chem C 118(35):20393–20404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51303003, 51303002) and Natural Science Foundation of Anhui (1408085QE76).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Hong, Y., Song, Q. et al. Highly efficient removal of copper ions from water using poly(acrylic acid)-grafted chitosan adsorbent. Colloid Polym Sci 295, 627–635 (2017). https://doi.org/10.1007/s00396-017-4042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4042-8

Keywords

Navigation