Skip to main content
Log in

Apparent molar volume, conductivity, and fluorescence studies of ternary systems of dipeptides + ionic liquids ([Cnmim]Br, n = 10, 14) + water at different temperatures

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Densities, conductivities, and fluorescence spectra of two imidazolium ionic liquids ([Cnmim]Br, n = 10, 14)-glycyl dipeptide-water mixtures were measured as a function of temperature. The density data have been utilized to calculate the apparent molar volumes, standard partial molar volumes (V 02,φ ), standard partial molar volumes of transfer from water to aqueous ionic liquids solutions (Δt ), the hydration number (N H), partial molar expansibility (E 0φ ), and Hepler’s constant of glycyl dipeptides. Through the electrical conductivity measurements, the c cmc values at different temperatures and a series of thermodynamic parameters (ΔG o m , ΔH o m , and ΔS o m ) of micellization of [Cnmim]Br (n = 10, 14) in aqueous glycyl dipeptides solutions are evaluated. The pyrene fluorescence spectra were used to study the change of micropolarity produced by the interaction of [Cnmim]Br with glycyl dipeptide, and the aggregation behavior of [Cnmim]Br (n = 10, 14). The results shown above have been explained in terms of solute–solvent interactions and structural changes in the mixed solutions. The interaction between [Cnmim]Br (n = 10, 14) and glycyl dipeptide is affected by temperature and hydrocarbon chain length of the dipeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rogers RD, Seddon KR (2003) Science 302:792–793

    Article  Google Scholar 

  2. Welton T (1999) Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  3. Wang JJ, Zhang LM, Wang HY, Wu CZ (2011) J Phys Chem B 115:4955–4962

    Article  CAS  Google Scholar 

  4. Hemmateenejad B, Safavi A, Dorostkar S (2011) J Mol Liq 160:35–39

    Article  CAS  Google Scholar 

  5. Fang S, Ren DH (2013) J Chem Eng Data 58:845–850

    Article  CAS  Google Scholar 

  6. Shekaari H, Jebali F (2010) J Solution Chem 39:1409–1427

    Article  CAS  Google Scholar 

  7. Shekaari H, Jebali F (2010) J Chem Eng Data 55:2517–2523

    Article  CAS  Google Scholar 

  8. Tome LIN, Jorge M, Gomes JRB, Coutinho JAP (2010) J Phys Chem B 114:16450–16459

    Article  CAS  Google Scholar 

  9. Singh V, Chhotaray PK, Gardas RL (2014) J Chem Thermodyn 71:37–49

    Article  CAS  Google Scholar 

  10. Shekaari H, Kazempour A (2012) J Taiwan Inst Chem E 43:650–657

    Article  CAS  Google Scholar 

  11. Shekaari H, Kazempour A, Ghasedi-Khajeh Z (2012) Fluid Phase Equilib 316:102–108

    Article  CAS  Google Scholar 

  12. Yan ZN, Geng R, Gu BX, Pan Q, Wang JJ (2014) Fluid Phase Equilib 367:125–134

    Article  CAS  Google Scholar 

  13. Mazur K, Heisler IA, Meech SR (2010) J Phys Chem B 114:10684–10691

    Article  CAS  Google Scholar 

  14. Klotz I, Rosenberg RM (1972) Chemical thermodynamics, basic theory and methods, 3rd edn. Benjamin Cummings, Upper Saddle River

    Google Scholar 

  15. Wadi RK, Goyal RK (1992) J Solution Chem 21:163–170

    Article  CAS  Google Scholar 

  16. Anil KN, Renu P, Neetu (2014) J Chem Thermodyn 68:169–182

    Article  Google Scholar 

  17. Millero FJ, Surdo AL, Shin C (1978) J Phys Chem 82:784–792

    Article  CAS  Google Scholar 

  18. Yan ZN, Wang XL, Bai XR, Wang SQ, Wang JJ (2012) J Chem Thermodyn 52:89–94

    Article  CAS  Google Scholar 

  19. Yan ZN, Wang XG, Zhao Y, Wang JJ (2009) Acta Chim Sinica 67:115–121

    CAS  Google Scholar 

  20. Yan ZN, Zhao Y, Xing RH, Wang XG, Wang JJ (2010) J Chem Eng Data 55:759–764

    Article  CAS  Google Scholar 

  21. Yan ZN, Wang XG, Xing RH, Wang JJ (2009) J Chem Eng Data 54:1787–1792

    Article  CAS  Google Scholar 

  22. Roy MN, De P, Sikdar PS (2013) Fluid Phase Equilib 352:7–13

    Article  CAS  Google Scholar 

  23. Roy MN, Ekka D, Dewan R (2011) Acta Chim Slov 58:792–796

    CAS  Google Scholar 

  24. Rajagopal K, Gladson SE (2011) J Chem Thermodyn 43:852–867

    Article  CAS  Google Scholar 

  25. Anwar A, Vidiksha B, Priyanka B (2013) J Mole Liq 177:209–214

    Article  Google Scholar 

  26. Hepler L (1969) Can J Chem 47:4613–4617

    Article  CAS  Google Scholar 

  27. Banipal TS, Kaur D, Banipal PK, Singh G (2008) J Mol Liq 140:54–60

    Article  CAS  Google Scholar 

  28. Gurney RW (1953) Ionic processes in solution. McGraw Hill, New York

    Google Scholar 

  29. Friedman H, Krishnan CV (1973) Plenum press, New York, pp. 118

  30. Franks F, Quickenden MA, Reid DS, Watson B (1970) Trans Faraday Soc 66:582–589

    Article  CAS  Google Scholar 

  31. Carpena P, Aguiar J, Bernaola-Galvan P, Ruiz CC (2002) Langmuir 18:6054–6058

    Article  CAS  Google Scholar 

  32. Aguiar J, Carpena P, Molina-Bolivar JA, Ruiz CC (2003) J Colloid Interface Sci 258:116–122

    Article  CAS  Google Scholar 

  33. Wang JJ, Wang HY, Zhang SL, Zhang HC, Zhao Y (2007) J Phys Chem B 111:6181–6188

    Article  CAS  Google Scholar 

  34. Inoue T, Ebina H, Dong B (2007) J Colloid Interface Sci 314:236–241

    Article  CAS  Google Scholar 

  35. Geng F, Liu J, Zheng LQ, Yu L, Li Z, Li GZ, Tung CH (2010) J Chem Eng Data 55:147–151

    Article  CAS  Google Scholar 

  36. Li N, Zhang SH, Zheng LQ, Li XW, Yu L (2008) Phys Chem Chem Phys 10:4375–4377

    Article  Google Scholar 

  37. Philips JNE (1955) Trans Faraday Soc 51:561–569

    Article  Google Scholar 

  38. Luczak J, Jungnickel C, Joskowska M, Thoming J, Hupka J (2009) J Colloid Interface Sci 336:111–116

    Article  CAS  Google Scholar 

  39. Turro NJ, Yekta A (1978) J Am Chem Soc 100:5951–5952

    Article  CAS  Google Scholar 

  40. Vanyur R, Biczok L, Miskolczy Z (2007) Colloids Surfaces A: Physicochem Eng Aspects 299:256–261

    Article  CAS  Google Scholar 

  41. Goodchild I, Collier L, Millar SL, Prokes I, Lord JCD, Butts CP, Bowers J, Webster JRP, Heenan RK (2007) J Colloid Interface Sci 307:455–468

    Article  CAS  Google Scholar 

  42. Tanford C (1973) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New York

    Google Scholar 

  43. Das D, Ismail K (2008) J Colloid Interface Sci 327:198–203

    Article  CAS  Google Scholar 

  44. Israelachvili JN (1985) Physics of amphiphiles: micelles, vesicles and microemulsions. Degiorgio V. and Corti M. (eds) Amsterdam: North-Holland

Download references

Acknowledgment

The project is financially supported by the Natural Science Foundation of China (No. 20973158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenning Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 131 kb)

Table S2

(DOC 132 kb)

Table S3

(DOC 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Yan, Z., Kang, Y. et al. Apparent molar volume, conductivity, and fluorescence studies of ternary systems of dipeptides + ionic liquids ([Cnmim]Br, n = 10, 14) + water at different temperatures. Colloid Polym Sci 293, 2485–2495 (2015). https://doi.org/10.1007/s00396-015-3644-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3644-2

Keywords

Navigation