Skip to main content

Advertisement

Log in

Relaxin mitigates microvascular damage and inflammation following cardiac ischemia–reperfusion

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Microvascular obstruction (MVO) and leakage (MVL) forms a pivotal part of microvascular damage following cardiac ischemia–reperfusion (IR). We tested the effect of relaxin therapy on MVO and MVL in mice following cardiac IR injury including severity of MVO and MVL, opening capillaries, infarct size, regional inflammation, cardiac function and remodelling, and permeability of cultured endothelial monolayer. Compared to vehicle group, relaxin treatment (50 μg/kg) reduced no-reflow area by 38% and the content of Evans blue as a permeability tracer by 56% in jeopardized myocardium (both P < 0.05), effects associated with increased opening capillaries. Relaxin also decreased leukocyte density, gene expression of cytokines, and mitigated IR-induced decrease in protein content of VE-cadherin and relaxin receptor. Infarct size was comparable between the two groups. At 2 weeks post-IR, relaxin treatment partially preserved cardiac contractile function and limited chamber dilatation versus untreated controls by echocardiography. Endothelial cell permeability assay demonstrated that relaxin attenuated leakage induced by hypoxia-reoxygenation, H2O2, or cytokines, action that was independent of nitric oxide but associated with the preservation of VE-cadherin. In conclusion, relaxin therapy attenuates IR-induced MVO and MVL and endothelial leakage. This protection was associated with reduced regional inflammatory responses and consequently led to alleviated adverse cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bani-Sacchi T, Bigazzi M, Bani D, Mannaioni PF, Masini E (1995) Relaxin-induced increased coronary flow through stimulation of nitric oxide production. Br J Pharmacol 116:1589–1594. https://doi.org/10.1111/j.1476-5381.1995.tb16377.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bani D, Bigazzi M, Masini E, Bani G, Sacchi TB (1995) Relaxin depresses platelet aggregation: in vitro studies on isolated human and rabbit platelets. Lab Investig 73:709–716

    CAS  PubMed  Google Scholar 

  3. Bani D, Masini E, Bello MG, Bigazzi M, Sacchi TB (1998) Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart. Am J Pathol 152:1367–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Beiert T, Knappe V, Tiyerili V, Stockigt F, Effelsberg V, Linhart M, Steinmetz M, Klein S, Schierwagen R, Trebicka J, Roell W, Nickenig G, Schrickel JW, Andrie RP (2018) Chronic lower-dose relaxin administration protects from arrhythmia in experimental myocardial infarction due to anti-inflammatory and anti-fibrotic properties. Int J Cardiol 250:21–28. https://doi.org/10.1016/j.ijcard.2017.09.017

    Article  PubMed  Google Scholar 

  5. Bekkers SC, Yazdani SK, Virmani R, Waltenberger J (2010) Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol 55:1649–1660. https://doi.org/10.1016/j.jacc.2009.12.037

    Article  PubMed  Google Scholar 

  6. Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brecht A, Bartsch C, Baumann G, Stangl K, Dschietzig T (2011) Relaxin inhibits early steps in vascular inflammation. Regul Pept 166:76–82. https://doi.org/10.1016/j.regpep.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  8. Carrick D, Haig C, Ahmed N, Rauhalammi S, Clerfond G, Carberry J, Mordi I, McEntegart M, Petrie MC, Eteiba H, Hood S, Watkins S, Lindsay MM, Mahrous A, Welsh P, Sattar N, Ford I, Oldroyd KG, Radjenovic A, Berry C (2016) Temporal evolution of myocardial hemorrhage and edema in patients after acute ST-segment elevation myocardial infarction: pathophysiological insights and clinical implications. J Am Heart Assoc 5:e002834. https://doi.org/10.1161/JAHA.115.002834

    Article  PubMed  PubMed Central  Google Scholar 

  9. Collins MA, An J, Peller D, Bowser R (2015) Total protein is an effective loading control for cerebrospinal fluid western blots. J Neurosci Methods 251:72–82. https://doi.org/10.1016/j.jneumeth.2015.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conrad KP, Novak J (2004) Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol 287:R250–R261. https://doi.org/10.1152/ajpregu.00672.2003

    Article  CAS  PubMed  Google Scholar 

  11. Dai W, Hale S, Kloner RA (2017) Delayed therapeutic hypothermia protects against the myocardial no-reflow phenomenon independently of myocardial infarct size in a rat ischemia/reperfusion model. Int J Cardiol 236:400–404. https://doi.org/10.1016/j.ijcard.2017.01.079

    Article  PubMed  Google Scholar 

  12. Dschietzig T, Brecht A, Bartsch C, Baumann G, Stangl K, Alexiou K (2012) Relaxin improves TNF-alpha-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc Res 95:97–107. https://doi.org/10.1093/cvr/cvs149

    Article  CAS  PubMed  Google Scholar 

  13. Du XJ (2018) Post-infarct cardiac injury, protection and repair: roles of non-cardiomyocyte multicellular and acellular components. Sci China Life Sci 31:266–276. https://doi.org/10.1007/s11427-017-9223-x

    Article  Google Scholar 

  14. Du XJ, Bathgate RA, Samuel CS, Dart AM, Summers RJ (2010) Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol 7:48–58. https://doi.org/10.1038/nrcardio.2009.198

    Article  CAS  PubMed  Google Scholar 

  15. Du XJ, Hewitson TD, Nguyen MN, Samuel CS (2014) Therapeutic effects of serelaxin in acute heart failure. Circ J 78:542–552. https://doi.org/10.1253/circj.CJ-14-0014

    Article  CAS  PubMed  Google Scholar 

  16. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401. https://doi.org/10.1038/nm.2507

    Article  CAS  PubMed  Google Scholar 

  17. Failli P, Nistri S, Quattrone S, Mazzetti L, Bigazzi M, Sacchi TB, Bani D (2002) Relaxin up-regulates inducible nitric oxide synthase expression and nitric oxide generation in rat coronary endothelial cells. FASEB J 16:252–254. https://doi.org/10.1096/fj.01-0569fje

    Article  CAS  PubMed  Google Scholar 

  18. Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM (1996) Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J Exp Med 183:1981–1986

    Article  CAS  PubMed  Google Scholar 

  19. Folino A, Losano G, Rastaldo R (2013) Balance of nitric oxide and reactive oxygen species in myocardial reperfusion injury and protection. J Cardiovasc Pharmacol 62:567–575. https://doi.org/10.1097/FJC.0b013e3182a50c45

    Article  CAS  PubMed  Google Scholar 

  20. Funaro S, Galiuto L, Boccalini F, Cimino S, Canali E, Evangelio F, DeLuca L, Paraggio L, Mattatelli A, Gnessi L, Agati L (2011) Determinants of microvascular damage recovery after acute myocardial infarction: results from the acute myocardial infarction contrast imaging (AMICI) multi-centre study. Eur J Echocardiogr 12:306–312. https://doi.org/10.1093/ejechocard/jer009

    Article  PubMed  Google Scholar 

  21. Gao XM, Liu Y, White D, Su Y, Drew BG, Bruce CR, Kiriazis H, Xu Q, Jennings N, Bobik A, Febbraio MA, Kingwell BA, Bucala R, Fingerle-Rowson G, Dart AM, Morand EF, Du XJ (2011) Deletion of macrophage migration inhibitory factor protects the heart from severe ischemia–reperfusion injury: a predominant role of anti-inflammation. J Mol Cell Cardiol 50:991–999. https://doi.org/10.1016/j.yjmcc.2010.12.022

    Article  CAS  PubMed  Google Scholar 

  22. Gao XM, Moore XL, Liu Y, Wang XY, Han LP, Su Y, Tsai A, Xu Q, Zhang M, Lambert GW, Kiriazis H, Gao W, Dart AM, Du XJ (2016) Splenic release of platelets contributes to increased circulating platelet size and inflammation after myocardial infarction. Clin Sci (Lond) 130:1089–1104. https://doi.org/10.1042/CS20160234

    Article  CAS  Google Scholar 

  23. Gao XM, Wu QZ, Kiriazis H, Su Y, Han LP, Pearson JT, Taylor AJ, Du XJ (2017) Microvascular leakage in acute myocardial infarction: characterization by histology, biochemistry, and magnetic resonance imaging. Am J Physiol Heart Circ Physiol 312:H1068–H1075. https://doi.org/10.1152/ajpheart.00073.2017

    Article  PubMed  Google Scholar 

  24. Garlanda C, Parravicini C, Sironi M, De Rossi M, de Wainstok Calmanovici R, Carozzi F, Bussolino F, Colotta F, Mantovani A, Vecchi A (1994) Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors. Proc Natl Acad Sci USA 91:7291–7295. https://doi.org/10.1073/pnas.91.15.7291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hale SL, Mehra A, Leeka J, Kloner RA (2008) Postconditioning fails to improve no reflow or alter infarct size in an open-chest rabbit model of myocardial ischemia–reperfusion. Am J Physiol Heart Circ Physiol 294:H421–H425. https://doi.org/10.1152/ajpheart.00962.2007

    Article  CAS  PubMed  Google Scholar 

  26. Hamirani YS, Wong A, Kramer CM, Salerno M (2014) Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction: a systematic review and meta-analysis. JACC Cardiovasc Imaging 7:940–952. https://doi.org/10.1016/j.jcmg.2014.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P, Garcia-Dorado D, van Royen N, Schulz R, Heusch G (2019) The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res 115:1143–1155. https://doi.org/10.1093/cvr/cvy286

    Article  PubMed  Google Scholar 

  28. Heusch G (2016) The coronary circulation as a target of cardioprotection. Circ Res 118:1643–1658. https://doi.org/10.1161/CIRCRESAHA.116.308640

    Article  CAS  PubMed  Google Scholar 

  29. Hirase T, Node K (2012) Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol 302:H499–H505. https://doi.org/10.1152/ajpheart.00325.2011

    Article  CAS  PubMed  Google Scholar 

  30. Hisaw FL, Zarrow MX (1950) The physiology of relaxin. Vitam Horm 8:151–178. https://doi.org/10.1016/S0083-6729(08)60670-6

    Article  CAS  PubMed  Google Scholar 

  31. Kloner RA (2011) No-reflow phenomenon: maintaining vascular integrity. J Cardiovasc Pharmacol Ther 16:244–250. https://doi.org/10.1177/1074248411405990

    Article  PubMed  Google Scholar 

  32. Lam M, Royce SG, Samuel CS, Bourke JE (2018) Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. Pharmacol Ther 187:61–70. https://doi.org/10.1016/j.pharmthera.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  33. Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mewton N, Thibault H, Roubille F, Lairez O, Rioufol G, Sportouch C, Sanchez I, Bergerot C, Cung TT, Finet G, Angoulvant D, Revel D, Bonnefoy-Cudraz E, Elbaz M, Piot C, Sahraoui I, Croisille P, Ovize M (2013) Postconditioning attenuates no-reflow in STEMI patients. Basic Res Cardiol 108:383. https://doi.org/10.1007/s00395-013-0383-8

    Article  PubMed  Google Scholar 

  35. Moore XL, Su Y, Fan Y, Zhang YY, Woodcock EA, Dart AM, Du XJ (2014) Diverse regulation of cardiac expression of relaxin receptor by alpha1- and beta1-adrenoceptors. Cardiovasc Drugs Ther 28:221–228. https://doi.org/10.1007/s10557-014-6525-x

    Article  CAS  PubMed  Google Scholar 

  36. Ndrepepa G, Tiroch K, Fusaro M, Keta D, Seyfarth M, Byrne RA, Pache J, Alger P, Mehilli J, Schomig A, Kastrati A (2010) 5-Year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J Am Coll Cardiol 55:2383–2389. https://doi.org/10.1016/j.jacc.2009.12.054

    Article  PubMed  Google Scholar 

  37. Nie X, Li C, Hu S, Xue F, Kang YJ, Zhang W (2017) An appropriate loading control for western blot analysis in animal models of myocardial ischemic infarction. Biochem Biophys Rep 12:108–113. https://doi.org/10.1016/j.bbrep.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nistri S, Cinci L, Perna AM, Masini E, Mastroianni R, Bani D (2008) Relaxin induces mast cell inhibition and reduces ventricular arrhythmias in a swine model of acute myocardial infarction. Pharmacol Res 57:43–48. https://doi.org/10.1016/j.phrs.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  39. Perna AM, Masini E, Nistri S, Briganti V, Chiappini L, Stefano P, Bigazzi M, Pieroni C, Bani Sacchi T, Bani D (2005) Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. FASEB J 19:1525–1527. https://doi.org/10.1096/fj.04-3664fje

    Article  CAS  PubMed  Google Scholar 

  40. Qin CX, May LT, Li R, Cao N, Rosli S, Deo M, Alexander AE, Horlock D, Bourke JE, Yang YH, Stewart AG, Kaye DM, Du XJ, Sexton PM, Christopoulos A, Gao XM, Ritchie RH (2017) Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia–reperfusion injury in mice. Nat Commun 8:14232. https://doi.org/10.1038/ncomms14232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reffelmann T, Kloner RA (2002) Microvascular reperfusion injury: rapid expansion of anatomic no reflow during reperfusion in the rabbit. Am J Physiol Heart Circ Physiol 283:H1099–H1107. https://doi.org/10.1152/ajpheart.00270.2002

    Article  CAS  PubMed  Google Scholar 

  42. Samuel CS, Cendrawan S, Gao XM, Ming Z, Zhao C, Kiriazis H, Xu Q, Tregear GW, Bathgate RA, Du XJ (2011) Relaxin remodels fibrotic healing following myocardial infarction. Lab Investig 91:675–690. https://doi.org/10.1038/labinvest.2010.198

    Article  CAS  PubMed  Google Scholar 

  43. Sarwar M, Du XJ, Dschietzig TB, Summers RJ (2017) The actions of relaxin on the human cardiovascular system. Br J Pharmacol 174:933–949. https://doi.org/10.1111/bph.13523

    Article  CAS  PubMed  Google Scholar 

  44. Skyschally A, Amanakis G, Neuhauser M, Kleinbongard P, Heusch G (2017) Impact of electrical defibrillation on infarct size and no-reflow in pigs subjected to myocardial ischemia–reperfusion without and with ischemic conditioning. Am J Physiol Heart Circ Physiol 313:H871–H878. https://doi.org/10.1152/ajpheart.00293.2017

    Article  CAS  PubMed  Google Scholar 

  45. Stark K, Pekayvaz K, Massberg S (2018) Role of pericytes in vascular immunosurveillance. Front Biosci (Landmark Ed) 23:767–781. https://doi.org/10.2741/4615

    Article  CAS  Google Scholar 

  46. Valle Raleigh J, Mauro AG, Devarakonda T, Marchetti C, He J, Kim E, Filippone S, Das A, Toldo S, Abbate A, Salloum FN (2017) Reperfusion therapy with recombinant human relaxin-2 (serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc Res 113:609–619. https://doi.org/10.1093/cvr/cvw246

    Article  CAS  PubMed  Google Scholar 

  47. van Nieuw Amerongen GP, van Hinsbergh VW (2002) Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vasc Pharmacol 39:257–272. https://doi.org/10.1016/S1537-1891(03)00014-4

    Article  CAS  Google Scholar 

  48. Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28:223–232. https://doi.org/10.1161/ATVBAHA.107.158014

    Article  CAS  PubMed  Google Scholar 

  49. Weber C, Fraemohs L, Dejana E (2007) The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 7:467–477. https://doi.org/10.1038/nri2096

    Article  CAS  PubMed  Google Scholar 

  50. White DA, Su Y, Kanellakis P, Kiriazis H, Morand EF, Bucala R, Dart AM, Gao XM, Du XJ (2014) Differential roles of cardiac and leukocyte derived macrophage migration inhibitory factor in inflammatory responses and cardiac remodelling post myocardial infarction. J Mol Cell Cardiol 69:32–42. https://doi.org/10.1016/j.yjmcc.2014.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yetgin T, Uitterdijk A, Te Lintel Hekkert M, Merkus D, Krabbendam-Peters I, van Beusekom HMM, Falotico R, Serruys PW, Manintveld OC, van Geuns RM, Zijlstra F, Duncker DJ (2015) Limitation of infarct size and no-reflow by intracoronary adenosine depends critically on dose and duration. JACC Cardiovasc Interv 8:1990–1999. https://doi.org/10.1016/j.jcin.2015.08.033

    Article  PubMed  Google Scholar 

  52. Zhao XJ, Liu XL, He GX, Xu HP (2014) Effects of single-dose atorvastatin on interleukin-6, interferon gamma, and myocardial no-reflow in a rabbit model of acute myocardial infarction and reperfusion. Braz J Med Biol Res 47:245–251. https://doi.org/10.1590/1414-431X20132999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Grants (ID1081710, ID1005329) from the National Health and Medical Research Council (NHMRC) of Australia, the Victorian Government’s Operational Infrastructure Support Program, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, China (SKL-HIDCA-2017-Y11) and Nature Science Foundation of Xinjiang (2018D01C197). XJD was NHMRC research fellow (ID1043026). The authors acknowledge Novartis AG for supply of test sample of relaxin. We acknowledge a development grant provided by the Heini Foundations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Ming Gao or Xiao-Jun Du.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XM., Su, Y., Moore, S. et al. Relaxin mitigates microvascular damage and inflammation following cardiac ischemia–reperfusion. Basic Res Cardiol 114, 30 (2019). https://doi.org/10.1007/s00395-019-0739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-019-0739-9

Keywords

Navigation