Skip to main content

Advertisement

Log in

Comparison of full field and anomaly initialisation for decadal climate prediction: towards an optimal consistency between the ocean and sea-ice anomaly initialisation state

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Decadal prediction exploits sources of predictability from both the internal variability through the initialisation of the climate model from observational estimates, and the external radiative forcings. When a model is initialised with the observed state at the initial time step (Full Field Initialisation—FFI), the forecast run drifts towards the biased model climate. Distinguishing between the climate signal to be predicted and the model drift is a challenging task, because the application of a-posteriori bias correction has the risk of removing part of the variability signal. The anomaly initialisation (AI) technique aims at addressing the drift issue by answering the following question: if the model is allowed to start close to its own attractor (i.e. its biased world), but the phase of the simulated variability is constrained toward the contemporaneous observed one at the initialisation time, does the prediction skill improve? The relative merits of the FFI and AI techniques applied respectively to the ocean component and the ocean and sea ice components simultaneously in the EC-Earth global coupled model are assessed. For both strategies the initialised hindcasts show better skill than historical simulations for the ocean heat content and AMOC along the first two forecast years, for sea ice and PDO along the first forecast year, while for AMO the improvements are statistically significant for the first two forecast years. The AI in the ocean and sea ice components significantly improves the skill of the Arctic sea surface temperature over the FFI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We compute the climatology as the average of the predictions over the start dates and it evolves with the forecast time.

  2. Coupled Model Intercomparison Project Phase 5 sponsored by WCRP: http://cmip-pcmdi.llnl.gov/cmip5/index.html.

  3. With “reference” state we mean what is known as the truth state, which includes either an observational dataset, or a reanalysis.

  4. PREDICATE: http://www.ugamp.nerc.ac.uk/predicate/.

References

  • Anderson DLT, Doblas-Reyes FJ, Balmaseda M, Weisheimer A (2009) Decadal variability: processes, predictability and prediction. ECMWF Technical Memorandum 591, http://www.ecmwf.int/publications/library/do/references/show?id=89132

  • Balmaseda MA, Mogensen KS, Weaver AT (2012) Evaluation of the ecmwf ocean reanalysis oras4. Quart J Roy Meteor Soc. doi:10.1002/qj.2063

  • Bellucci A, Haarsma R, Gualdi S, Athanasiadis PJ, Caian M, Cassou C, Fernandez E, Germe A, Jungclaus J, Kroger J, Matei D, Muller W, Pohlmann H, Salas-Mélia D, Sanchez E, Smith D, Terray L, Wyser K, Yang S (2014) An assessment of a multi-model ensemble of decadal climate predictions. Clim Dyn 44:2787–2806. doi:10.1007/s00382-014-2164-y

    Article  Google Scholar 

  • Blanchard-Wrigglesworth E, Bitz CM, Holland MM (2011) Influence of initial conditions and climate forcing on predicting arctic sea ice. Geophys Res Lett 38(L18503): doi:10.1029/2011GL048807

  • Booth J, Wang S, Polvani L (2013) Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Clim Dyn 41:787–802. doi:10.1007/s00382-012-1472-3

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier A, Penduff T, Gulev S (2009) An era40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi:10.1016/j.ocemod.2009.10.005

    Article  Google Scholar 

  • Chevallier M, Salas-Mélia D (2012) The role of sea ice thickness distribution in the arctic sea ice potential predictability: a diagnostic approach with a coupled gcm. J Clim 25:3025–3038

    Article  Google Scholar 

  • Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb M (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 365:1957–1970

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, PP, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kȧllbergc P, Kähler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F, (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteor Soc 137:553–597

  • Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143. doi:10.1146/annurev-marine-120408-151453

    Article  Google Scholar 

  • Doblas-Reyes F, Andreu-Burillo I, Chikamoto Y, García-Serrano J, Guèmas V, Kimoto M, Mochizuki T, Rodrigues L, van Oldenborgh G (2013a) Initialized near-term regional climate change prediction. Nat Commun 4(1715): doi:10.1038/ncomms2704

  • Doblas-Reyes FJ, Weisheimer A, Palmer TN, Murphy JM, Smith D (2010) Forecast quality assessment of the ensembles seasonal-to-decadal stream 2 hindcasts. ECMWF Technical Memorandum 621, http://www.ecmwf.int/publications/library/do/references/show?id=89771

  • Doblas-Reyes FJ, García-Serrano J, Lienert F, Biescas AP, Rodrigues LRL (2013b) Seasonal climate predictability and forecasting: status and prospects. WIREs Clim Change 4:245–268. doi:10.1002/wcc.217

    Article  Google Scholar 

  • Du H, Doblas-Reyes FJ, García-Serrano J, Guèmas V, Soufflet Y, Wouters B (2012) Sensitivity of decadal predictions to the initial atmospheric and ocean perturbations. Clim Dyn. doi:10.1007/s00382-011-1285-9

  • Ethe C, Aumont O, Foujols MA, Levy M (2006) Nemo reference manual, tracer component: Nemo-top. preliminary version. Note du Pole de modlisation, Institut Pierre-Simon Laplace (IPSL) France 28:1288–1619

  • Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948-present. Geophys Res Lett 113(D01103): doi:10.1029/2007JD008470

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  • García-Serrano J, Doblas-Reyes F (2012) On the assessment of near-surface global temperature and north atlantic multi-decadal variability in the ensembles decadal hindcast. Clim Dyn. doi:10.1007/s00382-012-1413-1

  • Gastineau G, Frankignoul C (2014) Influence of the north atlantic sst variability on the atmospheric circulation during the twentieth century. J Clim 28:1396–1416. doi:10.1175/JCLI-D-14-00424.1

    Article  Google Scholar 

  • Goddard L, Kumar A, Solomon A, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason SJ, Kirtman BP, Msadek R, Sutton R, Hawkins E, Fricker T, Hegerl G, Ferro CAT, Stephenson DB, Meehl GA, Stockdale T, Burgman R, Greene AM, Kushnir Y, Newman M, Carton J, Fukumori I, Delworth T (2012) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn. doi:10.1007/s00382-012-1481-2

  • Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:13337–23355

    Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mithell JFB, Wood RA (2000) The simulation of sst, sea ice extents and ocean heat and ocean heat transports in a version of the hadley centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Guemas V, Doblas-Reyes F, Mogensen K, Keely S, Tang Y (2014) Ensemble of sea ice initial conditions for interannual climate predictions. Clim Dyn 43:2813–2829. doi:10.1007/s00382-014-2095-7

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(RG4004): doi:10.1029/2010RG000345

  • Hazeleger W, Severijns C, Semmler T, Stefânescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kȧllberg P, Koenigk T, McGrath R, Miranda P, van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willân U (2010) Ec-earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363. doi:10.1175/2010BAMS2877.1

    Article  Google Scholar 

  • Hazeleger W, Guemas V, Wouters B, Corti S, Andreu-Burillo I, Doblas-Reyes FJ, Wyser K, Caian M (2013) Multiyear climate predictions using two initialization strategies. Geophys Res Lett 40(9):1794–1798. doi:10.1002/grl.50355

    Article  Google Scholar 

  • Kerr RA (2000) A north atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985. doi:10.1126/science.288.5473.1984

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20): doi:10.1029/2005GL024233

  • Kushnir Y (1994) Interdecadal variations in the north atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157

    Article  Google Scholar 

  • Lienert F, Doblas-Reyes F (2013) Decadal prediction of interannual tropical and north pacific sea surface temperature. J Geophys Res 118:5913–5922. doi:10.1002/jgrd.50469

    Google Scholar 

  • Madec G (2008) Nemo ocean engine. Note du Pole de modlisation, Institut Pierre-Simon Laplace (IPSL) France 27:12881619

  • Magnusson L, Leutbecher M, Kallen E (2008) Comparison between singular vectors and breeding vectors as initial perturbations for the ecmwf ensemble prediction system. Mon Wea Rev 134:4092–4104

    Article  Google Scholar 

  • Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T (2012) Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. ECMWF Technical Memorandum 676. http://www.ecmwf.int/publications/library/do/references/show?id=90506

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the echam5/mpi-om model. J Clim 25:8502–8523. doi:10.1175/JCLI-D-11-00633.1

    Article  Google Scholar 

  • Mignot J, Frankignoul C (2004) Interannual to interdecadal variability of sea surface salinity in the atlantic and its link to the atmosphere in a coupled model. J Geophys Res 109(C04005): doi:10.1029/2003JC002005

  • Mogensen KS, Balmaseda MA, Weaver A (2012) The nemovar ocean data assimilation as implemented in the ecmwf ocean analysis for system4. ECMWF Technical Memorandum 657 (in preparation)

  • Msadek R, Frankignoul C, Li LZX (2011) Mechanisms of the atmospheric response to north atlantic multidecadal variability: a model study. Clim Dyn 36:1255–1276. doi:10.1007/s00382-010-0958-0

    Article  Google Scholar 

  • Msadek R, Johns W, Yeager S, Danabasoglu G, Delworth T, Rosati A (2013) The atlantic meridional heat transport at 26.5 n and its relationship with the moc in the rapid array and the gfdl and ncar coupled models. J Clim 26:4335–4356

    Article  Google Scholar 

  • Newman M (2007) Interannual to decadal predictability of tropical and north pacific sea surface temperatures. J Clim 20:2333–2356. doi:10.1175/JCLI4165.1

    Article  Google Scholar 

  • Old C, Haines K (2006) North atlantic subtropical mode waters and ocean memory in hadcm3. J Clim 19:1126–1148

    Article  Google Scholar 

  • Otterȧ OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Persechino A, Mignot J, Swingedouw D, Labetoulle S, Guilyardi E (2012) Decadal predictability of the atlantic meridional overturning circulation and climate in the ipsl-cm5a-lr model. Clim Dyn 40(9):2359–2380. doi:10.1007/s00382-012-1466-1

    Google Scholar 

  • Pohlmann H, Jungclaus J, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the gecco oceanic synthesis: Effects on the north atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  • Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012) Causes of the rapid warming of the north atlantic ocean in the mid-1990s. J Clim 25: doi:10.1175/JCLI-D-11-00443.1

  • Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2010) The new gpcc full data reanalysis version 5 providing high-quality gridded monthly precipitation data for the global land-surface is public available since december 2010. GPCC Status Report. http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU4/KU42/en/Reports__Publications/GPCC__status__report__2010,templateId=raw,property=publicationFile.pdf/GPCC_status_report_2010.pdf

  • Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L (2015) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn 46(5):1819–1840. doi:10.1007/s00382-015-2678-y

    Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the gloabl climate system of period 65–70 years. Nature 367:723–726. doi:10.1038/367723a0

    Article  Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  Google Scholar 

  • Smith DM, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn. doi:10.1007/s00382-013-1683-2

  • Smith T, Reynolds R, Peterson T, Lawrimore J (2008) Improvements to noaa’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2003) Influence of the ocean on north atlantic climate variability 1871–1999. J Clim 16:3296–3313

    Article  Google Scholar 

  • Swingedouw D, Ortega P, Mignot J, Guilyardi E, Masson-Delmotte V, Butler PG, Khodri M, Séférian R (2015) Bidecadal north atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nature Communications 6(6545): doi:10.1038/ncomms7545

  • Trenberth KE (1984) Some effects of finite sample size and persistence on meteorological statistics. part i: Autocorrelations. Mon Wea Rev 112:2359–2368. doi:10.1175/1520-0493(1984)112,2359:SEOFSS.2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE (2008) Observational needs for climate prediction and adaptation. WMO Bull 57:17–21

    Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33(L12704): doi:10.1029/2006GL026894

  • Uppala SM, Kȧllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hlm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J, Morcrette J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The era-40 reanalysis. Q J R Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Valcke S (2006) Oasis3 user guide. PRISM Support Initiative Report 3:64

  • Van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2011) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280. doi:10.1007/s00382-012-1313-4

    Article  Google Scholar 

  • Vitart F (2014) Evolution of ecmwf sub-seasonal forecast skill scores. Q J R Meteorol Soc 140(683):1889–1899. doi:10.1002/qj.2256

    Article  Google Scholar 

  • Volpi D, Guemas V, Doblas-Reyes FJ, Hawkins E, Nichols N (2016) Decadal climate prediction with a refined anomaly initialisation approach. Clim Dyn. doi:10.1007/s00382-016-3176-6

  • Von Storch H, Zwiers F (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: Late twentieth-century north atlantic ocean heat content. J Clim 25: doi:10.1175/JCLI-D-11-00595.1

  • Zhang J, Rothrock DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon Weather Rev 131:845–861

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support for this study from the SPECS (ENV-2012-308378) project funded by the Seventh Framework Programme (FP7) of the European Commission and the PICA-ICE (CGL2012-31987) project funded by the Ministry of Economy and Competitiveness of Spain. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputación through the Barcelona Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danila Volpi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4111 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpi, D., Guemas, V. & Doblas-Reyes, F.J. Comparison of full field and anomaly initialisation for decadal climate prediction: towards an optimal consistency between the ocean and sea-ice anomaly initialisation state. Clim Dyn 49, 1181–1195 (2017). https://doi.org/10.1007/s00382-016-3373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3373-3

Keywords

Navigation