Skip to main content

Advertisement

Log in

Decadal prediction of Sahel rainfall using dynamics-based indices

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

At decadal time scales, the capability of state-of-the-art atmosphere-ocean coupled climate models in predicting the precipitation in Sahel is assessed. A set of 14 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is selected and two experiments are analysed, namely initialized decadal hindcasts and forced historical simulations. Considering the strong linkage of the atmospheric circulation signatures over West Africa with the rainfall variability, this study aims to investigate the potential of using wind fields for decadal predictions. Namely, a West African monsoon index (WAMI) is defined, based on the coherence of low (925 hPa) and high (200 hPa) troposphere wind fields, which accounts for the intensity of the monsoonal circulation. A combined empirical orthogonal functions analysis is applied to explore the wind fields’ covariance modes, and a set of indices is defined on the basis of the identified patterns. The WAMI predictive skill is assessed by comparing WAMI from coupled models with WAMI from reanalysis products and with a standardized precipitation index (SPI) from observations. Results suggest that the predictive skill is highly model dependent and it is strongly related to the WAMI definition. In addition, hindcasts are more skilful than historical simulations in both deterministic and probability forecasts, which suggests an added value of initialization for decadal predictability. Moreover, coupled models are more skilful in predicting the observed SPI than the WAMI obtained from reanalysis. WAMI performance is also compared with decadal predictions from CMIP5 models based on a Sahelian precipitation index, and an improvement in predictive skill is observed in some models when WAMI is used. Therefore, we conclude that dynamics-based indices are potentially more effective for decadal prediction of precipitation in Sahel than precipitation-based indices for those models in which Sahel rainfall variability is not well simulated. We thus recommend a two-fold approach when testing the performance of models in predicting Sahel rainfall, based not only on rainfall but also on the dynamics of the West African monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30:2169–2173

    Article  Google Scholar 

  • Barnston AG (1992) Correspondence among the correlation, RMSE, and heidke forecast verification measures; refinement of the heidke score. Weather Forecast 7:699–709

    Article  Google Scholar 

  • Biasutti M, Held IM, Sobe AH, Giannini A (2008) SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J Clim 21:3471–3486

    Article  Google Scholar 

  • Caminade C, Terray L (2010) Twenty century Sahel rainfall variability as simulated by the ARPEGE AGCM and future changes. Clim Dyn 35:75–94

    Article  Google Scholar 

  • Chang P, Saravanan R, Ji L, Hegerl GC (2000) The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J Clim 13:2195–2216

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • Davies JR, Rowell DP, Folland CK (1997) North Atlantic and European seasonal predictability using an ensemble of multi- decadal AGCM simulations. Int J Climatol 17:1263–1284

    Article  Google Scholar 

  • Diouf I, Deme A, Ndione JA, Gaye AT, Rodríguez-Fonseca B, Cissé M (2013) Climate and health: observation and modeling of malaria in the Ferlo (Senegal). C R Biologies 336:253–260

    Article  Google Scholar 

  • Doblas-Reyes FJ, Weisheimer A, Palmer TN, Murphy JM, Smith D (2010) Forecast quality assessment of the ENSEMBLES seasonal-to-decadal stream 2 hindcasts. ECMWF Technical Memoranda 621

  • Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, Garcia-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715. doi:10.1038/ncomms2704

    Article  Google Scholar 

  • Fink AH, Schrage JM, Kotthaus S (2010) On the potential causes of the nonstationary correlations between West African precipitation and Atlantic hurricane activity. J Clim 23:5437–5456

    Article  Google Scholar 

  • Folland C, Palmer T, Parker D (1986) Sahel rainfall and worldwide sea temperatures, 1901–1985. Nature 320:602–607

    Article  Google Scholar 

  • Fontaine B, Janicot S (1992) Wind field coherence and its variations over West Africa. J Clim 5:512–524

    Article  Google Scholar 

  • Fontaine B, Janicot S, Moron V (1995) Rainfall anomaly patterns and wind field signals over West Africa in August (1958–1989). J Clim 8:1503–1510

    Article  Google Scholar 

  • Fontaine B, Gaetani M, Ullmann A, Roucou P (2011) Time evolution of observed July–September sea surface temperature-Sahel climate teleconnection with removed quasi-global effect (1900–2008). J Geophys Res 116:D04105. doi:10.1029/2010JD014843

    Google Scholar 

  • Gaetani M, Fontaine B (2013) Interaction between the West African Monsoon and the summer Mediterranean climate: an overview. Física de la Tierra 25:41–55

    Google Scholar 

  • Gaetani M, Mohino E (2013) Decadal prediction of the Sahelian precipitation in CMIP5 simulations. J Clim 26:7708–7719. doi:10.1175/JCLI-D-12-00635.1

    Article  Google Scholar 

  • Gaetani M, Fontaine B, Roucou P, Baldi M (2010) Influence of the Mediterranean Sea on the West African monsoon: intraseasonal variability in numerical simulations. J Geophys Res 115:D24115

    Article  Google Scholar 

  • García Serrano J, Guemas V, Doblas-Reyes FJ (2015) Added-value from initialization in predictions of Atlantic multi-decadal variability. Clim Dyn 44:2539–2555. doi:10.1007/s00382-014-2370-7

    Article  Google Scholar 

  • García-Serrano J, Doblas-Reyes FJ (2012) On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn 39:2025–2040

    Article  Google Scholar 

  • García-Serrano J, Doblas-Reyes FJ, Haarsma RJ, Polo I (2013) Decadal prediction of the dominant West African monsoon rainfall modes. J Geophys Res Atmos 118:5260–5279. doi:10.1002/jgrd.50465

    Article  Google Scholar 

  • Garric G, Douville H, Déqué M (2002) Prospects for improved seasonal predictions of monsoon precipitation over Sahel. Int J Climatol 22:331–341. doi:10.1002/joc.736

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scale. Science 302:1027–1030

    Article  Google Scholar 

  • Grist JP, Nicholson SE (2001) A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J Clim 14:1337–1359

    Article  Google Scholar 

  • Haarsma RJ, Selten FM, Weber SL, Kliphuis M (2005) Sahel rainfall variability and response to greenhouse warming. Geophys Res Lett 32:L17702. doi:10.1029/2005GL023232

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister HD (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatology 34:623–642

    Article  Google Scholar 

  • Hoerling MP, Hurrell J, Eischeid JK (2006) Detection and attribution of 20th Century northern and southern African rainfall change. J Clim 19:3989–4008. doi:10.1175/JCLI3842.1

    Article  Google Scholar 

  • Ickowicz A, Ancey V, Corniaux C, Duteurtre G, Poccard-Chappuis R, Toure I, Vall E and Wane A (2012) Crop-livestock production systems in the Sahel—increasing resilience for adaptation to climate change and preserving food security. Building resilience for adaptation to climate change in the agriculture sector FAO/OECD Rome 243–276

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nature Geosci 2:32–36

    Article  Google Scholar 

  • International CLIVAR Project Office (ICPO) (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office CLIVAR Publication Series 150:6

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kandji ST, Verchot S, Mackensen J (2006) Climate Change and variability in the Sahel region: impacts and adaptation strategies in the Agricultural sector. World Agroforestry Centre (ICRAF) and United Nations Environment Programme (UNEP). UNEP 2006:1–48

    Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J et al (2008) Advancing decadal scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2003a) Improved seasonal probability forecasts. J Clim 16:1684–1701

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2003b) On the ROC score of probability forecasts. J Clim 16:4145–4150

    Article  Google Scholar 

  • Kidson JW (1977) African rainfall and its relation to the upper air circulation. Quart J Roy Meteor Soc 103:441–456

    Article  Google Scholar 

  • Kim HM, Webster PJ (2012) Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys Res Lett 39:L10701. doi:10.1029/2012GL051644

    Google Scholar 

  • Kirtman B, Power SB, Adedoyin JA et al (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

  • Kohler M, Kalthoff N, Kottmeier Ch (2010) The impact of soil moisture modifications on CBL characteristics in West Africa: a case-study from the AMMA campaign. Quart J Roy Meteor Soc 136:442–455. doi:10.1002/qj.430

    Article  Google Scholar 

  • Lu J, Delworth T (2005) Oceanic forcing of the late 20th century Sahel drought. Geophys Res Lett 32:L22706. doi:10.1029/2005GL023316

    Article  Google Scholar 

  • Martin ER, Thorncroft C (2014) Sahel rainfall in multimodel CMIP5 decadal hindcasts. Geophys Res Lett: 41. doi:10.1002/2014GL059338

  • McIntire J (1981) Food security in the Sahel: variable import levy, grain reserves and foreign exchange assistance. Research report 26 International Food Policy Research Institute Washington USA

  • Meehl GA et al (2009) Decadal prediction: can it be skillful? Bull Amer Meteor Soc 90:1467–1485

    Article  Google Scholar 

  • Meehl GA, Goddard L, Boer G et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267. doi:10.1175/BAMS-D-12-00241.1

    Article  Google Scholar 

  • Miyakoda K, Hembree GD, Strickler RF, Shulman I (1972) Cumulative results of extended forecast experiments I. Model performance for winter cases. Mon Wea Rev 100:836–855. doi:10.1175/1520-0493(1972)100<0836:CROEFE>2.3.CO;2

    Article  Google Scholar 

  • Mochizuki T, Ishii M, Kimoto M et al (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci USA 107:1833–1837

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011a) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440

    Article  Google Scholar 

  • Mohino E, Rodríguez-Fonseca B, Losada T, Gervois S, Janicot S, Bader J, Ruti P, Chauvin F (2011b) SST-forced signals on West African rainfall from AGCM simulations-Part I: changes in the interannual modes and model intercomparison. Clim Dyn 37:1707–1725. doi:10.1007/s00382-011-1093-2

    Article  Google Scholar 

  • Mohino E, Rodríguez-Fonseca B, Mechoso CR, Gervois S, Ruti P, Chauvin F (2011c) Impacts of the tropical Pacific/Indian Oceans on the seasonal cycle of the West African monsoon. J Clim 24:3878–3891. doi:10.1175/2011JCLI3988.1

    Article  Google Scholar 

  • Moron V, Philippon N, Fontaine B (2004) Simulation of West African monsoon circulation in four atmospheric general circulation models forced by prescribed sea surface temperature. J Geophys Res 109:D24105. doi:10.1029/2004JD004760

    Article  Google Scholar 

  • Ndiaye O, Ward MN, Thiaw WM (2011) Predictability of seasonal Sahel rainfall using GCMs and lead-time improvements through the use of a coupled model. J Clim 24:1931–1949. doi:10.1175/2010JCLI3557.1

    Article  Google Scholar 

  • Newell RE, Kidson JE (1984) African mean wind changes between Sahelian wet and dry periods. J Climatol 4:24–33

    Article  Google Scholar 

  • Nicholson SE (2013) The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorology. doi:10.1155/2013/453521

    Google Scholar 

  • Philippon N, Doblas-Reyes FJ, Ruti P (2010) Skill, reproducibility and potential predictability of the West African monsoon in coupled GCMs. Clim Dyn 35:53–74. doi:10.1007/s00382-010-0856-5

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Mohino E, Mechoso CR et al (2015) Variability and predictability of West African droughts: a review in the role of sea surface temperature anomalies. J Clim 28:4034–4060. doi:10.1175/JCLI-D-14-00130.1

    Article  Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  Google Scholar 

  • Solomon A, Goddard L, Kumar A, Carton J, Deser C, Fukumori I, Stockdale T (2011) Distinguishing the role of natural and anthropogenically forced decadal climate variability: implications for prediction. Bull Am Meteorol Soc 2:141–156

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Trenberth KE et al (2007) Observations: Surface and atmospheric climate change. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [Solomon S et al (eds)]. Cambridge University Press, Cambridge and New York, NY

  • Uppala SM, Ållberg PW, Simmons AJ et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi- model ensemble. Clim Dyn 38:1263–1280. doi:10.1007/s00382-012-1313-4

    Article  Google Scholar 

  • Venegas SA (2001) Statistical methods for signal detection in climate. Danish Center for Earth System Science Rep 2:46

  • Venzke S, Allen MR, Sutton RT, Rowell DP (1999) The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J Clim 12:2562–2584

    Article  Google Scholar 

  • Villamayor J, Mohino E (2015) Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5 simulations. Geophys Res Lett Res Lett 42:1214–1222. doi:10.1002/2014GL062473

    Article  Google Scholar 

  • Wang G, Eltahir EAB (2000) Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour Res 36:1013–1021. doi:10.1029/1999WR900361

    Article  Google Scholar 

  • Zeng N, Neelin JD, Lau KM, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540

    Article  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for the comments and suggestions, which helped us improve the manuscript. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 603521 and the Spanish Project CGL2012-38923-C02-01. We acknowledge the World Climate Research Program’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Otero.

Additional information

This paper is a contribution to the special issue on West African climate decadal variability and its modeling, consisting of papers from the West African Monsoon Modeling and Evaluation (WAMME) and the African Multidisciplinary Monsoon Analyses (AMMA) projects, and coordinated by Yongkang Xue, Serge Janicot, and William Lau.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otero, N., Mohino, E. & Gaetani, M. Decadal prediction of Sahel rainfall using dynamics-based indices. Clim Dyn 47, 3415–3431 (2016). https://doi.org/10.1007/s00382-015-2738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2738-3

Keywords

Navigation