Skip to main content

Advertisement

Log in

Seasonal climate information preserved in West Antarctic ice core water isotopes: relationships to temperature, large-scale circulation, and sea ice

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

As part of the United States’ contribution to the International Trans-Antarctic Scientific Expedition (ITASE), a network of precisely dated and highly resolved ice cores was retrieved from West Antarctica. The ITASE dataset provides a unique record of spatial and temporal variations of stable water isotopes (δ18O and δD) across West Antarctica. We demonstrate that, after accounting for water vapor diffusion, seasonal information can be successfully extracted from the ITASE cores. We use meteorological reanalysis, weather station, and sea ice data to assess the role of temperature, sea ice, and the state of the large-scale atmospheric circulation in controlling seasonal average water isotope variations in West Antarctica. The strongest relationships for all variables are found in the cores on and west of the West Antarctic Ice Sheet Divide and during austral fall. During this season positive isotope anomalies in the westernmost ITASE cores are strongly related to a positive pressure anomaly over West Antarctica, low sea ice concentrations in the Ross and Amundsen Seas, and above normal temperatures. Analyses suggest that this seasonally distinct climate signal is due to the pronounced meridional oriented circulation and its linkage to enhanced sea ice variations in the adjacent Southern Ocean during fall, both of which also influence local to regional temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bretherton F (1964) Low frequency oscillations trapped near equator. Tellus 16:181–185

    Article  Google Scholar 

  • Bretherton C, Widmann M, Dymnikov V, Wallace J, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Bromwich D, Weaver C (1983) Latitudinal displacement from main moisture source controls δ18O of snow in coastal Antarctica. Nature 301:145–147

    Article  Google Scholar 

  • Bromwich D, Guo Z, Bai L, Chen Q (2004) Modeled Antarctic precipitation part I: spatial and temporal variability. J Clim 17:427–447

    Article  Google Scholar 

  • Cavalieri D, Parkinson C (1981) Large-scale variations in observed Antarctic sea ice extent and associated atmospheric circulation. Mon Wea Rev 109:2323–2336

    Article  Google Scholar 

  • Cavalieri D, Parkinson CL (2008) Antarctic sea ice variability and trends, 1979–2006. J Geophys Res-Oceans 113:C07004. doi:10.1029/2007JC004564

    Article  Google Scholar 

  • Chapman WL, Walsh JE (2007) A synthesis of Antarctic temperatures. J Clim 20:4096–4117

    Article  Google Scholar 

  • Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J Geophys Res Oceans 113:C02S07. doi:10.1029/2007JC004257

  • Cuffey K, Steig E (1998) Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland. J Glaciol 44:273–284

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Delaygue G, Masson V, Jouzel J, Koster RD, Healy RJ (2000) The origin of Antarctic precipitation: a modelling approach. Tellus 52:19–36

    Article  Google Scholar 

  • Ding QH, Steig EJ, Battisti DS, Küttel M (2011) Recent West Antarctic warming caused by central tropical Pacific warming. Nature Geosci 4:398–403

    Article  Google Scholar 

  • Divine DV, Isaksson E, Kaczmarska M, Godtliebsen F, Oerter H, Schlosser E, Johnsen SJ, van den Broeke M, van de Wal RSW (2009) Tropical Pacific-high latitude south Atlantic teleconnections as seen in δ18O variability in Antarctic coastal ice cores. J Geophys Res Atmos 114:D11112. doi:10.1029/2008JD010475

    Article  Google Scholar 

  • Dixon D, Mayewski P, Kaspari S, Sneed S, Handley M (2004) A 200 year sub-annual record of sulfate in West Antarctica, from 16 ice cores. Ann Glaciol 39:545–556

    Article  Google Scholar 

  • Epstein S, Sharp R, Goddard I (1963) Oxygen-isotope ratios in Antarctic snow, firn, and ice. J Geol 71:698–720

    Article  Google Scholar 

  • Fegyveresi JG, Alley RB, Spencer MK, Fitzpatrick JJ, Steig EJ, White JWC, McConnell JR, Taylor KC (2011) Late Holocen climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimate. J Glaciol 57:629–638

    Article  Google Scholar 

  • Fisher DA, Reeh N, Clausen HB (1985) Stratigraphic noise in time series derived from ice cores. Ann Glaciol 7:76–83

    Google Scholar 

  • Genthon C, Krinner G, Sacchettini M (2003) Interannual Antarctic tropospheric circulation and precipitation variability. Clim Dyn 21:289–307

    Article  Google Scholar 

  • Genthon C, Kaspari S, Mayewski P (2005) Interannual variability of the surface mass balance of West Antarctica from ITASE cores and ERA40 reanalyses, 1958–2000. Clim Dyn 24:759–770

    Article  Google Scholar 

  • Gregory S, Noone D (2008) Variability in the teleconnection between the El Nino-Southern Oscillation and West Antarctic climate deduced from West Antarctic ice core isotope records. J Geophys Res Atmos 113:D17110. doi:10.1029/2007JD009107

    Article  Google Scholar 

  • Grootes P, Stuiver M (1986) Ross ice shelf oxygen isotopes and West Antarctic climate history. Quat Res 26:49–67

    Article  Google Scholar 

  • Hoffmann G, Werner M, Heimann M (1998) Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J Geophys Res Atmos 103:16871–16896

    Article  Google Scholar 

  • Hoskins B, Karoly D (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Johnsen SJ (1977) Stable isotope profiles compared with temperature profiles in firn and with historical temperature records. Proceedings of symposium on isotopes and impurities in snow and ice, Grenoble Aug–Sept 1975. Int Ass Hydrol Sci Publ 118:388–392

  • Johnsen SJ, Clausen HB, Cuffey KM, Hoffmann G, Schwander J, Creyts T (2000) Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. In: Hondoh T (ed) Physics of ice core records. Hokkaido University Press, Sapporo, pp 121–140

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kaspari S, Mayewski P, Dixon D, Spikes V, Sneed S, Handley M, Hamilton G (2004) Climate variability in West Antarctica derived from annual accumulation-rate records from ITASE firn/ice cores. Ann Glaciol 39:585–594

    Article  Google Scholar 

  • Kato K (1978) Factors controlling oxygen isotopic composition of fallen snow in Antarctica. Nature 272:46–48

    Article  Google Scholar 

  • Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143

    Article  Google Scholar 

  • Masson-Delmotte V, Hou S, Ekaykin A, Jouzel J, Aristarain A, Bernardo RT, Bromwich D, Cattani O, Delmotte M, Falourd S, Frezzotti M, Gallee H, Genoni L, Isaksson E, Landais A, Helsen MM, Hoffmann G, Lopez J, Morgan V, Motoyama H, Noone D, Oerter H, Petit JR, Royer A, Uemura R, Schmidt GA, Schlosser E, Simoes JC, Steig EJ, Stenni B, Stievenard M, van den Broeke MR, van de Wal RSW, van de Berg WJ, Vimeux F, White JWC (2008) A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J Clim 21:3359–3387

    Article  Google Scholar 

  • Mayewski PA, Frezzotti M, Bertler N, Van Ommen T, Hamilton G, Jacka TH, Welch B, Frey M, Qin D, Ren J, Simoes J, Fily M, Oerter H, Nishio F, Isaksson E, Mulvaney R, Holmund P, Lipenkov V, Goodwin I (2005) The international trans-antarctic scientific expedition (ITASE): an overview. Ann Glaciol 41:180–185

    Article  Google Scholar 

  • Mo KC, Ghil M (1987) Statistics and dynamics of persistent anomalies. J Atmos Sci 44:877–901

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Chapman W, Comiso JC (2008) Recent variability and trends of Antarctic near-surface temperature. J Geophys Res Atmos 113:D04105. doi:10.1029/2007JD009094

    Article  Google Scholar 

  • Morgan V, van Ommen T (1997) Seasonality in late-Holocene climate from ice-core records. Holocence 7:351–354

    Article  Google Scholar 

  • Nicolas JP, Bromwich DH (2011) Climate of West Antarctica and influence of marine air intrusions. J Clim 24:49–67

    Article  Google Scholar 

  • Noone D, Simmonds I (2002a) Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979–1995. J Clim 15:3150–3169

    Article  Google Scholar 

  • Noone D, Simmonds I (2002b) Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J Geophys Res Atmos 107:4742. doi:10.1029/2002JD002262

    Article  Google Scholar 

  • Noone D, Simmonds I (2004) Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J Geophys Res Atmos 109:D07105. doi:10.1029/2003JD004228

    Article  Google Scholar 

  • Raphael MN (2007) The influence of atmospheric zonal wave three on Antarctic sea ice variability. J Geophys Res Atmos 112:D12112. doi:10.1029/2006JD007852

    Article  Google Scholar 

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Scheider DP, Steig EJ, Comiso JC (2004) Recent climate variability in Antarctica from satellite-derived temperature data. J Clim 17:1569–1583

    Article  Google Scholar 

  • Schneider DP, Noone DC (2007) Spatial covariance of water isotope records in a global network of ice cores spanning twentieth-century climate change. J Geophys Res Atmos 112:D18105. doi:10.1029/2007JD008652

    Article  Google Scholar 

  • Schneider DP, Steig EJ (2008) Ice cores record significant 1940 s Antarctic warmth related to tropical climate variability. Proc Natl Acad Sci 105:12154–12158

    Article  Google Scholar 

  • Schneider DP, Steig EJ, van Ommen T (2005) High-resolution ice-core stable-isotopic records from Antarctica: towards interannual climate reconstruction. Ann Glaciol 41:63–70

    Article  Google Scholar 

  • Schneider DP, Deser C, Okumura Y (2012) An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim Dyn 38:323–347. doi:10.1007/s00382-010-0985-x

    Article  Google Scholar 

  • Shuman CA, Stearns CR (2001) Decadal-length composite inland West Antarctic temperature records. J Clim 14:1977–1988

    Article  Google Scholar 

  • Shuman CA, Stearns CR (2002) Decadal-length composite West Antarctic air temperature records. National Snow and Ice Data Center, Digital media, Boulder, CO

  • Sime LC, Wolff EW, Oliver KIC, Tindall JC (2009) Evidence for warmer interglacials in East Antarctic ice cores. Nature 462:342–345

    Article  Google Scholar 

  • Sodemann H, Stohl A (2009) Asymmetries in the moisture origin of Antarctic precipitation. Geophys Res Lett 36:L22803. doi:10.1029/2009GL040242

    Article  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino-Southern Oscillation and Southern Annular Mode variability. J Geophys Res Oceans 113:C03S90. doi:10.1029/2007JC004269

  • Steig EJ (2009) US ITASE Stable isotope data, Antarctica. National Snow and Ice Data Center. DIF: NSIDC-0425

  • Steig EJ, Mayewski PA, Dixon DA, Kaspari SD, Frey MM, Schneider DP, Arcone SA, Hamilton GS, Spikes VB, Albert M, Meese D, Gow AJ, Shuman CA, White JWC, Sneed S, Flaherty J, Wumkes M (2005) High-resolution ice cores from US ITASE (West Antarctica): development and validation of chronologies and determination of precision and accuracy. Ann Glaciol 41:77–84

    Article  Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–462

    Article  Google Scholar 

  • Thomas ER, Bracegirdle TJ (2009) Improving ice core interpretation using in situ and reanalysis data. J Geophys Res Atmos 114:D20116. doi:10.1029/2009JD012263

    Article  Google Scholar 

  • Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle T, Maksym T, Meredith MP, Wang Z, Orr A (2009) Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:L08502. doi:10.1029/2009GL037524

    Article  Google Scholar 

  • Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Vinther BM, Jones PD, Briffa KR, Clausen HB, Andersen KK, Dahl-Jensen D, Johnsen SJ (2010) Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat Sci Rev 29:522–538

    Article  Google Scholar 

  • White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380:699–702

    Article  Google Scholar 

  • Yuan X, Li C (2008) Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J Geophys Res Oceans 113:C06S91. doi:10.1029/2006JC004067

  • Yuan X, Martinson D (2001) The Antarctic dipole and its predictability. Geophys Res Lett 28:3609–3612

    Article  Google Scholar 

  • Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res 107:3041. doi:10.1029/2000JC000733

    Article  Google Scholar 

Download references

Acknowledgments

We thank University of Washington IsoLab staff and students A. Schauer, J. Flaherty, D. Schneider, P. Neff, K. Samek, R. Teel, and J. Bautista for help with the analyses. P. Mayewski and D. Dixon’s coordination of the U.S. ITASE fieldwork was invaluable. This work was supported by grants OPP-0837988 and 0963924 from the National Science Foundation. The National Center for Atmospheric Research is funded by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Steig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2477 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küttel, M., Steig, E.J., Ding, Q. et al. Seasonal climate information preserved in West Antarctic ice core water isotopes: relationships to temperature, large-scale circulation, and sea ice. Clim Dyn 39, 1841–1857 (2012). https://doi.org/10.1007/s00382-012-1460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1460-7

Keywords

Navigation