Skip to main content
Log in

Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work evaluates the skill of retrospective predictions of the second version of the NCEP Climate Forecast System (CFSv2) for the North Atlantic sea surface temperature (SST) and investigates the influence of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the prediction skill over this region. It is shown that the CFSv2 prediction skill with 0–8 month lead displays a “tripole”-like pattern with areas of higher skills in the high latitude and tropical North Atlantic, surrounding the area of lower skills in the mid-latitude western North Atlantic. This “tripole”-like prediction skill pattern is mainly due to the persistency of SST anomalies (SSTAs), which is related to the influence of ENSO and NAO over the North Atlantic. The influences of ENSO and NAO, and their seasonality, result in the prediction skill in the tropical North Atlantic the highest in spring and the lowest in summer. In CFSv2, the ENSO influence over the North Atlantic is overestimated but the impact of NAO over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North Atlantic. The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23:2885–2901. doi:10.1175/2010JCLI3205.1

    Article  Google Scholar 

  • Carton JA, Huang B (1994) Warm events in the tropical Atlantic. J Phys Oceanogr 24:888–903

    Article  Google Scholar 

  • Cassou C, Deser C, Terray L, Hurrell JW, Dr’evillon M (2004) Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J Clim 17:3349–3363

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Chang P, Ji L, Li H, Penland C, Matrosova L (1998) Prediction of tropical Atlantic sea surface temperature. Geophys Res Lett 25(8):1193–1196

    Article  Google Scholar 

  • Chang P, Saravanan R, Ji L (2003) Tropical Atlantic seasonal predictability: the roles of El Niño remote influence and thermodynamic air-sea feedback. Geophys Res Lett 30(10):1501. doi:10.1029/2002GL016119

    Article  Google Scholar 

  • Chiang JCH, Sobel AH (2002) Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J Clim 15:2616–2631

    Article  Google Scholar 

  • Chiang JCH, Cheng W, Bitz CM (2008) Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys Res Lett 35:L07704. doi:10.1029/2008GL033292

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys Res Lett 38:L14701. doi:10.1029/2011GL047949

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to the El Niño-Southern Oscillation. J Geophys Res 102(C1):929–945

    Article  Google Scholar 

  • Fletcher CG, Saunders MA (2006) Winter North Atlantic Oscillation hindcast skill 1900–2001. J Clim 19:5762–5776. doi:10.1175/JCLI3949.1

    Article  Google Scholar 

  • Hu Z-Z, Huang B (2006a) On the significance of the relationship between the North Atlantic Oscillation in early winter and Atlantic SST anomalies. J Geophys Res 26:D12103. doi:10.1029/2005JD006339

    Article  Google Scholar 

  • Hu Z-Z, Huang B (2006b) Physical processes associated with tropical Atlantic SST meridional gradient. J Clim 19(21):5500–5518

    Article  Google Scholar 

  • Hu Z-Z, Huang B (2006c) Air-sea coupling in the North Atlantic during summer. Clim Dyn 26(2):441–457. doi:10.1007/s00382-005-0094-4

    Article  Google Scholar 

  • Hu Z-Z, Huang B (2007) The predictive skill and the most predictable pattern in the tropical Atlantic: the effect of ENSO. Mon Weather Rev 135(5):1786–1806

    Article  Google Scholar 

  • Hu Z-Z, Huang B, Pegion K (2008) Leading patterns of tropical Atlantic variability in a coupled general circulation model. Clim Dyn 30(7–8):703–726. doi:10.1007/s00382-007-0318-x

    Article  Google Scholar 

  • Hu Z-Z, Kumar A, Huang B, Xue Y, Wang W, Jha B (2011a) Persistent atmospheric and oceanic anomalies in the North Atlantic from Summer 2009 to Summer 2010. J Clim 24(22):5812–5830. doi:10.1175/2011JCLI4213.1

    Article  Google Scholar 

  • Hu Z-Z et al (2011b) Sensitivity of tropical climate to low-level clouds in the NCEP Climate Forecast System. Clim Dyn 36(9–10):1795–1811. doi:10.1007/s00382-010-0797-z

    Article  Google Scholar 

  • Huang B (2004) Remotely forced variability in the tropical Atlantic Ocean. Clim Dyn 23:133–152. doi:10.1007/s00382-004-0443-8

    Article  Google Scholar 

  • Huang B, Schopf PS, Pan Z (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29(21):2039. doi:10.1029/2002GL014872

    Article  Google Scholar 

  • Huang B, Hu Z-Z, Jha B (2007) Evolution of model systematic errors in the tropical Atlantic basin from the NCEP coupled hindcasts. Clim Dyn 28(7/8):661–682. doi:10.1007/s00382-006-0223-8

    Article  Google Scholar 

  • Huang B, Hu Z-Z, Schneider EK, Wu Z, Xue Y, Klinger B (2012) Influences of tropical–extratropical interaction on the multidecadal AMOC variability in the NCEP Climate Forecast System. Clim Dyn. doi:10.1007/s00382-011-1258-z (published online)

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) The North Atlantic Oscillation: climate significance and environmental impact. AGU Geophysical Monograph Series 134, 279pp

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2012) Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim Dyn. doi:10.1007/s00382-012-1364-6

    Google Scholar 

  • Kumar A et al (2012) An analysis of the non-stationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon Weather Rev (in press)

  • Latif M, Grötzner A (2000) The equatorial Atlantic oscillation and its response to ENSO. Clim Dyn 16:213–218

    Article  Google Scholar 

  • Li J, Wang XL (2003) A new North Atlantic Oscillation index and its variability. Adv Atmos Sci 20(5):661–676

    Article  Google Scholar 

  • Luo J-J, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497. doi:10.1175/JCLI3526.1

    Article  Google Scholar 

  • Mahajan S, Saravanan R, Chang P (2010) Free and forced variability of the tropical Atlantic Ocean: role of the wind-evaporation-sea surface temperature feedback. J Clim 23:5958–5977

    Article  Google Scholar 

  • Portis DH, Walsh JE, Hamly ME, Lamb PJ (2001) Seasonality of the North Atlantic Oscillation. J Clim 14:2069–2078

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Rodwell MJ, Folland CK (2002) Atlantic air-sea interaction and seasonal predictability. Q J R Meteorol Soc 128:1413–1443

    Article  Google Scholar 

  • Saha S et al (2006) The NCEP Climate Forecast System. J Clim 19:3483–3517

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP Climate Forecast System reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi:10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Saha S et al (2012) The NCEP Climate Forecast System version 2. J Clim (in review)

  • Saunders MA, Qian B (2002) Seasonal predictability of the winter NAO from north Atlantic sea surface temperatures. Geophys Res Lett 29(22):2049. doi:10.1029/2002GL014952

    Article  Google Scholar 

  • Seager R, Kushnir Y, Visbeck M, Naik NH, Miller J, Krahmann G, Cullen H (2000) Causes of Atlantic Ocean climate variability between 1958 and 1998. J Clim 13(16):2845–2862

    Article  Google Scholar 

  • Smirnov D, Vimont DJ (2012) Extratropical forcing of tropical Atlantic variability during boreal summer and fall. J Clim 25:2056–2076. doi:10.1175/JCLI-D-11-00104.1

    Article  Google Scholar 

  • Tourre YM, White WB (2005) Evolution of the ENSO signal over the tropical Pacific-Atlantic domain. Geophys Res Lett 32:L07605. doi:10.1029/2004GL022128

    Article  Google Scholar 

  • Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536

    Article  Google Scholar 

  • Wang H et al (2009) A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J Clim 22:4481–4500

    Article  Google Scholar 

  • Xie S-P (1999) A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70

    Article  Google Scholar 

  • Xue Y, Huang B, Hu Z-Z, Kumar A, Wen C, Behringer D, Nadiga S (2011) An assessment of oceanic variability in the NCEP Climate Forecast System reanalysis. Clim Dyn 37(11–12):2511–2539. doi:10.1007/s00382-010-0954-4

    Article  Google Scholar 

  • Zhang S (2011) A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a simple pycnocline prediction model. J Clim 24(23). doi:10.1175/JCLI-D-10-05003.1

Download references

Acknowledgments

We appreciate the helps of Mingyue Chen in getting and processing the hindcast data. Thanks also go to two reviewers and Yan Xue for their constructive comments and suggestions, which make the manuscript improved significantly. B. Huang and J. Zhu are supported by the COLA omnibus grant from NSF (ATM-0830068), NOAA (NA09OAR4310058) and NASA (NNX09AN50G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Zhen Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, ZZ., Kumar, A., Huang, B. et al. Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Clim Dyn 40, 2745–2759 (2013). https://doi.org/10.1007/s00382-012-1431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1431-z

Keywords

Navigation