Skip to main content

Advertisement

Log in

A multivariate analysis of Antarctic sea ice since 1979

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recent satellite observations have shown an increase in the total extent of Antarctic sea ice, during periods when the atmosphere and oceans tend to be warmer surrounding a significant part of the continent. Despite an increase in total sea ice, regional analyses depict negative trends in the Bellingshausen-Amundsen Sea and positive trends in the Ross Sea. Although several climate parameters are believed to drive the formation of Antarctic sea ice and the local atmosphere, a descriptive mechanism that could trigger such differences in trends are still unknown. In this study we employed a multivariate analysis in order to identify the response of the Antarctic sea ice with respect to commonly utilized climate forcings/parameters, as follows: (1) The global air surface temperature, (2) The global sea surface temperature, (3) The atmospheric CO2 concentration, (4) The South Annular Mode, (5) The Niño 3, (6) The Niño 3 + 4, 7) The Niño 4, (8) The Southern Oscillation Index, (9) The Multivariate ENSO Index, (10) the Total Solar Irradiance, (11) The maximum O3 depletion area, and (12) The minimum O3 concentration over Antarctica. Our results indicate that western Antarctic sea ice is simultaneously impacted by several parameters; and that the minimum, mean, and maximum sea ice extent may respond to a separate set of climatic/geochemical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010

    Article  Google Scholar 

  • Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing CO2. J Clim 19:2437–2450

    Article  Google Scholar 

  • Broecker WS (1997) Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278:1582–1588

    Google Scholar 

  • Cavalieri DJ, Parkinson CL (2008) Antarctic sea ice variability and trends, 1979–2006. J Geophys Res 113:C07004. doi:10.1029/2007JC004564

  • Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30. doi:10.1029/2003GL018031

  • Chapman WL, Walsh JE (2007) A synthesis of antarctic temperatures. J Clim 20:4096–4117

    Article  Google Scholar 

  • Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Croeley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim Dyn 13:757–767

    Article  Google Scholar 

  • Digby PGN, Kempton RA (1987) Multivariate analysis of ecological communities, 1st edn. Chapman & Hall, London, pp 80–86

    Book  Google Scholar 

  • Fahrbach E, Rohardt G, Scheele N, Schriider M, Strass V, Wisotzki A (1995) Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J Mar Res 53:515–530

    Google Scholar 

  • Fligge M, Solanki SK, Pap JM, Frohlich C, Wehrli Ch (2001) Variations of solar spectral irradiance from near UV to the infrared–measurements and results. J Atmos Solar Terr Phys 63:1479–1487

    Article  Google Scholar 

  • Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the southern annular mode. J Clim 19:979–997

    Article  Google Scholar 

  • Frohlich C (2002) Total solar irradiance variations since 1978. Adv Space Res 10:1409–1416

    Article  Google Scholar 

  • Gill AE (1973) Circulation and bottom water formation in the Weddell Sea. Deep-Sea Res 20:111–140

    Google Scholar 

  • Gille ST (2002) Warming of the southern ocean since the 1950 s. Science 295:1275–1277

    Article  Google Scholar 

  • Gillet NP, Thompson DW (2003) Simulation of recent southern hemisphere climate change. Science 302:273–275

    Google Scholar 

  • Hair JF Jr, Anderson RE, Tatham RI, Black WC (1998) Multivariate data analysis, 5th edn. Upper Saddle River, Prentice Hall

    Google Scholar 

  • Hall A, Visbeck M (2002) Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15:3043–3057

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293. doi:10.1073/pnas.0606291103

    Google Scholar 

  • Hoyt DV, Schatten KH (1997) The role of the sun in climate change. Oxford University Press, Oxford

  • Jacobs SS, Giulivi CF, Mele PA (2002) Freshening of the ross sea during the late 20th century. Science 297:386–389

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471

    Google Scholar 

  • Kristjánsson JE, Kristiansen J, Kaas E (2003) Solar activity, cosmic rays, clounds and climate–an update. Adv Space Res 32:407–415

    Article  Google Scholar 

  • Kwok R, Comiso JC (2002) Spatial patterns of variability in Antarctic surface temperature: connections to the southern hemisphere annular mode and the southern oscillation. Geophys Res Lett 29:1705. doi:10.1029/2002GL015415

    Google Scholar 

  • Lannuzel D, Schoemann V, de Jong J, Tison J-L, Chou L (2007) Distribution and 22 biogeochemical behaviour of iron in East Antarctic sea ice. Mar Chem 106(1–2):18–32

    Article  Google Scholar 

  • Lean J (1991) Variations in the Sun’s radiative output. Rev Geophys 29:505–535

    Article  Google Scholar 

  • Lean J, Beer J, Bradley J (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592

  • Liu J, Curry JA (2010) Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. PNAS 107(34): 14987–14992

    Google Scholar 

  • Liu J, Yuan X, Rind D, Martinson DG (2002) Mechanism study of the ENSO and southern high latitude climate teleconections. Geophys Res Lett 29. doi:1029/2002GL015143

  • Liu J, Curry JA, Martinson DG (2004) Interpretation of recent Antarctic sea ice variability. Geophys Res Lett 31: L02205. doi:10.1029/2003GL018732

  • Loeb V, Siegel V, Holm-Hansen O, Hewit RT, Fraserk W, Trivelpiecek W, Trivelpiecek S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900

    Article  Google Scholar 

  • McConnell JR, Aristarain AJ, Banta JR, Edwards PR, Simões JC (2007) 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proc Natl Acad Sci USA 104(14):5743–5748

    Google Scholar 

  • Meehl GA, Washington WM, Wigley TML, Arblaster JM, Dai A (2002) Solar and greenhouse gas forcing and climate response in the twentieth century. J Clim 16:426–444

    Article  Google Scholar 

  • Randel WJ, Cobb JB (1994) Coherent variations of monthly mean total ozone and lower stratospheric temperature. J Geophys Res 99:5433–5447

    Article  Google Scholar 

  • Rodolfo Rigozo N, Roger Nordemann DJ, Evangelista da Silva H, Pereira de Souza Echer M, Echer E (2007) Solar and climate signal records in tree ring width from chile (AD 1587–1994). Planet Space Sci 55:158–164

    Article  Google Scholar 

  • Smith RC, Martinson DG, Stammerjohn SE (2008) Bellingshausen and Western Antarctic Peninsula region: pigment biomass and sea ice spatial/temporal distribution and interannual variability. Deep Sea Research Part2 55: 1949–1963

  • Solanki SK, Krivova NA (2003) Can solar variability explain global warming since 1970? J Geophys Res 108(5): 1200. doi:10.1029/2002JA009753

  • Solomon S (1998) The mystery of the Antarctic ozone “hole”. Rev Geophys 26:131–148

    Article  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concept and history. Rev Geophys 37:275–316

    Article  Google Scholar 

  • Son WS, Tandon NF, Polvani LN, Waugh DW (2009) Ozone hole and southern hemisphere climate change. Geophys Res Lett 36:L15705. doi:10.1029/2009GL038671

  • Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res Part2 55:2041–2058

    Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J Geophys Res 113:c03s90. doi:10.1029/2007jc004269

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457. doi:10.1038/nature07669

  • Stolarsk RS, Krueger AJ, Schoeber MR, McPeters RLD, Newman PA, Alpert JC (1986) Nimbus7 satellite measurements of the spring time Antarctic ozone decrease. Nature 322:808–811

    Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part 1: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Troshichev O, Gabis I (2004) Effects of solar UV irradiation on dynamics of ozone hole in Antarctica. J Atmos Sol Terr Phys 67:93–104

    Article  Google Scholar 

  • Tung KK, Camp CD (2008) Solar cycle warming at Earth`s surface in NCEP and ERA-40 data: a linear discriminate analysis. J Geophys Res 113. doi:10.1029/2007jD009164

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle T, Maksym T, Meredith MP, Wang Z, Orr A (2009) Non annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:L08502. doi:10.1029/2009GL037524

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60:243–274

    Google Scholar 

  • Venegas SA (2003) The Antarctic circumpolar wave: a combination of two signals. J Clim 16(15):2509–2525

    Google Scholar 

  • Vonmoos M, Beer J, Muscheler R (2006) Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core. J Geophys Res 111:A10105. doi:10.1029/2005JA011500

  • White WB, Peterson R (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature, and sea ice extent. Nature 380:699–702

    Article  Google Scholar 

  • Yuan X (2004) ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct Sci 16(4):415–425

    Article  Google Scholar 

  • Yuan X, Martinson DG (2000) Antarctic sea ice extent variability and its global connectivity. J Clim 13:1697–1717

    Article  Google Scholar 

  • Zhang J (2007) Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J Clim 20:2515–2529

    Article  Google Scholar 

  • Zwally JH, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res 107(C5): 9-1–9-19. doi:10.1029/2000JC000733

Download references

Acknowledgments

We thank CNPq (the Brazilian National Council for the Scientific and Technological Development) for funding this work (project: 556971/2009-4 and 573720/2008-8), and FAPERJ for scholoarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Newton de Magalhães Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Magalhães Neto, N., Evangelista, H., Tanizaki-Fonseca, K. et al. A multivariate analysis of Antarctic sea ice since 1979. Clim Dyn 38, 1115–1128 (2012). https://doi.org/10.1007/s00382-011-1162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1162-6

Keywords

Navigation