Skip to main content

Advertisement

Log in

Late Pliocene to Pleistocene sensitivity of the Greenland Ice Sheet in response to external forcing and internal feedbacks

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The timing and nature of ice sheet variations on Greenland over the last ∼5 million years remain largely uncertain. Here, we use a coupled climate-vegetation-ice sheet model to determine the climatic sensitivity of Greenland to combined sets of external forcings and internal feedbacks operating on glacial-interglacial timescales. In particular, we assess the role of atmospheric pCO2, orbital forcing, and vegetation dynamics in modifying thresholds for the onset of glaciation in late Pliocene and Pleistocene. The response of circum-Arctic vegetation to declining levels of pCO2 (from 400 to 200 ppmv) and decreasing summer insolation includes a shift from boreal forest to tundra biomes, with implications for the surface energy balance. The expansion of tundra amplifies summer surface cooling and heat loss from the ground, leading to an expanded summer snow cover over Greenland. Atmospheric and land surface fields respond to forcing most prominently in late spring-summer and are more sensitive at lower Pleistocene-like levels of pCO2. We find cold boreal summer orbits produce favorable conditions for ice sheet growth, however simulated ice sheet extents are highly dependent on both background pCO2 levels and land-surface characteristics. As a result, late Pliocene ice sheet configurations on Greenland differ considerably from late Pleistocene, with smaller ice caps on high elevations of southern and eastern Greenland, even when orbital forcing is favorable for ice sheet growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barnola J, Raynaud D, Korotkevich Y, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329(6138):408–414

    Article  Google Scholar 

  • Berger A, Loutre M (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10(4):297–317

    Article  Google Scholar 

  • Berger A, Loutre M (1997) Palaeoclimate sensitivity to CO2 and insolation. Ambio 26:32–37

    Google Scholar 

  • Bigelow N, Brubaker L, Edwards M, Harrison S, Prentice I, Anderson P, Andreev A, Bartlein P, Christensen T, Cramer W et al (2003) Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the Last Glacial Maximum, mid-Holocene, and present. J Geophys Res 108:8170

    Google Scholar 

  • Bonelli S, Charbit S, Kageyama M, Woillez M, Ramstein G, Dumas C, Quiquet A (2009) Investigating the evolution of major northern hemisphere ice sheets during the last glacial-interglacial cycle. Clim Past 5:329–345

    Article  Google Scholar 

  • Briegleb B, Ramanathan V (1982) Spectral and diurnal variations in clear sky planetary albedo. J Appl Meteorol 21(8):1160–1171

    Article  Google Scholar 

  • Brotchie J, Silvester R (1969) On crustal flexure. J Geophys Res Solid Earth 74(22):5240–5252

    Google Scholar 

  • Brovkin V, Levis S, Loutre M, Crucifix M, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V (2003) Stability analysis of the climate–vegetation system in the northern high latitudes. Clim Change 57(1):119–138

    Article  Google Scholar 

  • Calov R, Ganopolski A, Claussen M, Petoukhov V, Greve R (2005) Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Clim Dyn 24(6):545–561

    Article  Google Scholar 

  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Brovkin V, Kubatzki C (2005) Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Clim Dyn 24(6):563–576

    Article  Google Scholar 

  • Calov R, Ganopolski A, Kubatzki C, Claussen M (2009) Mechanisms and time scales of glacial inception simulated with an earth mystem model of intermediate complexity. Clim Past Discuss 5:595–633

    Article  Google Scholar 

  • Claussen M (2009) Late quaternary vegetation-climate feedbacks. Clim Past Discuss 5:635–670

    Article  Google Scholar 

  • Cohen J (1968) Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol Bull 70(4):213–220

    Article  Google Scholar 

  • Covey C, Abe-Ouchi A, Boer G, Boville B, Cubasch U, Fairhead L, Flato G, Gordon H, Guilyardi E, Jiang X et al (2000) The seasonal cycle in coupled ocean-atmosphere general circulation models. Clim Dyn 16(10):775–787

    Article  Google Scholar 

  • Crowley T, Baum S (1995) Is the Greenland Ice Sheet bistable. Paleoceanography 10(3):357–363

    Article  Google Scholar 

  • Crucifix M, Loutre F (2002) Transient simulations over the last interglacial period (126–115 kyr bp): feedback and forcing analysis. Clim Dyn 19(5):417–433

    Article  Google Scholar 

  • De Noblet N, Colin Prentice I, Joussaume S, Texier D, Botta A, Haxeltine A (1996) Possible role of atmosphere–biosphere interactions in triggering the last glaciation. Geophys Res Lett 23(22):3191–3194

    Google Scholar 

  • De Vernal A, Hillaire-Marcel C (2008) Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320(5883):1622

    Article  Google Scholar 

  • DeConto R, Pollard D (2003a) A coupled climate-ice sheet modeling approach to the early Cenozoic history of the Antarctic ice sheet. Palaeogeogr Palaeoclimatol Palaeoecol 198(1):39–52

    Article  Google Scholar 

  • DeConto R, Pollard D (2003b) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 10:245–249

    Article  Google Scholar 

  • DeConto R, Pollard D, Harwood D (2007) Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography 22, PA3214. doi:10.1029/2006PA001350

  • DeConto R, Pollard D, Wilson P, Pälike H, Lear C, Pagani M (2008) Thresholds for Cenozoic bipolar glaciation. Nature 455(7213):652–656

    Article  Google Scholar 

  • Dolan A, Koenig SJ, Hill D, Haywood A, DeConto RM (2011) Pliocene ice sheet modelling intercomparison project: PLISMIP - simulating the Antarctic and Greenland ice sheets in the mid-Pliocene warm period, Geophysical Research abstracts, vol 13, EGU2011-442

  • Ekart D, Cerling T, Montanez I, Tabor N (1999) A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am J Sci 299(10):805–827

    Article  Google Scholar 

  • Fischer H, Wahlen M, Smith J, Mastroianni D, Deck B (1999) Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283(5408):1712

    Article  Google Scholar 

  • Flato G, Hibler W (1992) Modeling pack ice as a cavitating fluid. J Phys Oceanogr 22(6):626–651

    Article  Google Scholar 

  • Funder S, Jennings A, Kelly M (2004) Middle and late quaternary glacial limits in Greenland. Dev Quat Sci 2:425–430

    Google Scholar 

  • Gallimore R, Kutzbach J (1996) Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381(6582):503–505

    Article  Google Scholar 

  • Harrison S, Yu G, Takahara H, Prentice I (2001) Palaeovegetation—diversity of temperate plants in east asia. Nature 413:129–130

    Article  Google Scholar 

  • Haxeltine A, Prentice I (1996) Biome3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem Cycles 10(4):693–709

    Google Scholar 

  • Hays J, Imbrie J, Shackleton N (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194(4270):1121

    Article  Google Scholar 

  • Hill D, Haywood A, Hindmarsh R, Valdes P (2007) Characterizing ice sheets during the Pliocene: evidence from data and models. Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. Geological society of London, pp 517–538

  • Horton D, Poulsen C, Pollard D (2010) Influence of high-latitude vegetation feedbacks on late Palaeozoic glacial cycles. Nat Geosci 3:572–577

    Google Scholar 

  • Huybers P (2006) Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313(5786):508–511

    Article  Google Scholar 

  • Jahn A, Claussen M, Ganopolski A, Brovkin V (2005) Quantifying the effect of vegetation dynamics on the climate of the last glacial maximum. Clim Past Discusss 1(1):1–16

    Google Scholar 

  • Kageyama M, Charbit S, Ritz C, Khodri M, Ramstein G (2004) Quantifying ice-sheet feedbacks during the last glacial inception. Geophys Res Lett 31(24):L24203

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472

    Article  Google Scholar 

  • Kaplan J (2001) Geophysical applications of vegetation modeling. PhD thesis, Lund University

  • Kaplan J, Bigelow N, Prentice I, Harrison S, Bartlein P, Christensen T, Cramer W, Matveyeva N, McGuire A, Murray D et al (2003) Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(D19):8171

    Article  Google Scholar 

  • Khodri M, Leclainche Y, Ramstein G, Braconnot P, Marti O, Cortijo E (2001) Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410(6828):570–574

    Article  Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Williamson D, Rasch P (1998) The national center for atmospheric research community climate model: CCM3*. J Clim 11:1131–1149

    Article  Google Scholar 

  • Kleiven H, Jansen E, Fronval T, Smith T (2002) Intensification of northern hemisphere glaciations in the circum atlantic region (3.5–2.4 ma)—ice-rafted detritus evidence. Palaeogeogr Palaeoclimatol Palaeoecol 184(3):213–223

    Article  Google Scholar 

  • Kothavala Z, Oglesby R, Saltzman B (1999) Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2. Geophys Res Lett 26(2):209–212

    Article  Google Scholar 

  • Kubatzki C, Claussen M, Calov R, Ganopolski A (2006) Sensitivity of the last glacial inception to initial and surface conditions. Clim Dyn 27(4):333–344

    Article  Google Scholar 

  • Kürschner W, Burgh J, Visscher H, Dilcher D (1996) Oak leaves as biosensors of late neogene and early pleistocene paleoatmospheric CO2 concentrations. Mar Micropaleontol 27:299–312

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B (2004) A long-term numerical solution for the insolation quantities of the earth. Astron Astrophys 428(1):261–285

    Article  Google Scholar 

  • Lawrence K, Herbert T, Brown C, Raymo M, Haywood A (2009) High amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24(26):2218

    Google Scholar 

  • Lefebre F, Gallee H, Van Ypersele J, Huybrechts P (2002) Modelling of large-scale melt parameters with a regional climate model in south Greenland during the 1991 melt season. Ann Glaciol 35(1):391–397

    Article  Google Scholar 

  • Levis S, Foley J, Pollard D (1999) CO2, climate, and vegetation feedbacks at the last glacial maximum. J Geophys Res 104:31191–31198

    Google Scholar 

  • Li X, Berger A, Loutre M (1998) CO2 and Northern Hemisphere ice volume variations over the middle and late quaternary. Clim Dyn 14(7):537–544

    Article  Google Scholar 

  • Lorius C, Jouzel J, Raynaud D (1993) Glacials-interglacials in vostok: climate and greenhouse gases. Global Planet Change 7(1–3):131–143

    Article  Google Scholar 

  • Loutre M, Berger A (2000) No glacial-interglacial cycle in the ice volume simulated under a constant astronomical forcing and a variable CO2. Geophys Res Lett 27(6):783–786

    Google Scholar 

  • Lunt D, de Noblet-Ducoudré N, Charbit S (2004) Effects of a melted Greenland Ice Sheet on climate, vegetation, and the cryosphere. Clim Dyn 23(7):679–694

    Article  Google Scholar 

  • Lunt D, Foster G, Haywood A, Stone E (2008) Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454(7208):1102–1105

    Article  Google Scholar 

  • Lunt D, Haywood A, Foster G, Stone E (2009) The Arctic cryosphere in the mid-Pliocene and the future. Philos Trans R Soc A Math Phys Eng Sci 367(1886):49

    Article  Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K et al (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193):379–382

    Article  Google Scholar 

  • Meissner K, Weaver A, Matthews H, Cox P (2003) The role of land surface dynamics in glacial inception: a study with the UVic earth system model. Clim Dyn 21(7):515–537

    Article  Google Scholar 

  • Milanković M (1941) Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Königlich Serbische Akademie

  • Monserud R, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecol Model 62(4):275–293

    Article  Google Scholar 

  • Pagani M, Liu Z, LaRiviere J, Ravelo A (2009) High earth-system climate sensitivity determined from pliocene carbon dioxide concentrations. Nat Geosci 3(1):27–30

    Article  Google Scholar 

  • Paillard D (2001) Glacial cycles: toward a new paradigm. Rev Geophys 39(3):325–346

    Article  Google Scholar 

  • Pearson P, Palmer M (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406(6797):695–699

    Article  Google Scholar 

  • Petit J, Jouzel J, Raynaud D, Barkov N, Barnola J, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436

    Article  Google Scholar 

  • Phillips P, Held I (1994) The response to orbital perturbations in an atmospheric model coupled to a slab ocean. J Clim 7:767–782

    Article  Google Scholar 

  • Pollard D, DeConto R (2005) Hysteresis in Cenozoic Antarctic ice-sheet variations. Global Planet Change 45(1–3):9–21

    Article  Google Scholar 

  • Pollard D, DeConto R (2007) A coupled ice-sheet/ice-shelf/sediment model applied to a marine margin flowline: Forced and unforced variations. Special publication, International Association of Sedimentologists 39

  • Pollard D, DeConto R (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(7236):329–332

    Article  Google Scholar 

  • Pollard D, Thompson S (1995) Use of a land-surface-transfer scheme in a global climate model: the response to doubling stomatal resistance. Global Planet Change 10(1–4):129–161

    Article  Google Scholar 

  • Pollard D, Thompson S (1997) Driving a high-resolution dynamic ice-sheet model with gcm climate: ice-sheet initiation at 116,000 bp. Ann Glaciol 25:296–304

    Google Scholar 

  • Pollard D et al (2000) Comparisons of ice-sheet surface mass budgets from paleoclimate modeling intercomparison project (PMIP) simulations. Global Planet Change 24(2):79–106

    Article  Google Scholar 

  • Prentice I, Jolly D (2000) BIOME 6000 participants (2000) mid-holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27(3):507–519

    Article  Google Scholar 

  • Prentice I, Cramer W, Harrison S, Leemans R, Monserud R, Solomon A (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19(2):117–134

    Article  Google Scholar 

  • Prentice I, Sykes M, Cramer W (1993) A simulation model for the transient effects of climate change on forest landscapes. Ecol Model 65(1–2):51–70

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13(4):997–1027

    Article  Google Scholar 

  • Raymo M, Huybers P (2008) Unlocking the mysteries of the ice ages. Nature 451(7176):284–285

    Article  Google Scholar 

  • Raymo M, Lisiecki L, Nisancioglu K (2006) Plio-pleistocene ice volume, Antarctic climate, and the global δ18 O record. Science 313(5786):492

    Article  Google Scholar 

  • Ridley J, Huybrechts P, Gregory J, Lowe J (2005) Elimination of the Greenland Ice Sheet in a high CO2 climate. J Clim 18(17):3409–3427

    Article  Google Scholar 

  • Rind D, Peteet D, Kukla G (1989) Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model?. J Geophys Res 94:12851–12871

    Article  Google Scholar 

  • Salzmann U, Haywood A, Lunt D, Valdes P, Hill D (2008) A new global biome reconstruction and data-model comparison for the middle pliocene. Global Ecol Biogeogr 17(3):432–447

    Article  Google Scholar 

  • Salzmann U, Haywood A, Lunt D (2009) The past is a guide to the future? Comparing middle pliocene vegetation with predicted biome distributions for the twenty-first century. Philos Trans A 367(1886):189

    Article  Google Scholar 

  • Schlesinger M, Verbitsky M (1996) Simulation of glacial onset with a coupled atmospheric general circulation/mixed-layer ocean-ice-sheet/asthenosphere model. Palaeoclim Data Model 2:179–201

    Google Scholar 

  • Semtner A (1975) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389

    Article  Google Scholar 

  • Shackleton N (2000) The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289(5486):1897

    Article  Google Scholar 

  • Stone E, Lunt D, Rutt I, Hanna E (2010) The effect of more realistic forcings and boundary conditions on the modelled geometry and sensitivity of the Greenland Ice-Sheet. Cryosphere Discuss 4:233–285

    Article  Google Scholar 

  • Suarez M, Held I (1975) The effect of seasonally varying insolation on a simple albedo-feedback model. WMO Long Term Clim Fluctuat 76:407–413

    Google Scholar 

  • Tang G, Shafer S, Bartlein P, Holman J (2009) Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia. Ecol Model 220(12):1481–1491

    Article  Google Scholar 

  • Tarasov L, Peltier W (1997) Terminating the 100 kyr ice age cycle. J Geophys Res Atmos 102(D18):21665–21693

    Google Scholar 

  • Tarasov L, Peltier W (1999) Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle. J Geophys Res Atmos 104(D8):9517–9545

    Google Scholar 

  • Thompson S, Pollard D (1995a) A global climate model (GENESIS) with a land-surface transfer scheme. Part II: CO2 sensitivity. J Clim 8(5):1104–1121

    Google Scholar 

  • Thompson S, Pollard D (1995) A global climate model (genesis) with a land-surface transfer scheme part. i: Present climate simulation. J Clim 8(4):732–761

    Article  Google Scholar 

  • Thompson S, Pollard D (1997) Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS version-2 global climate model. J Clim 10(5):871–900

    Article  Google Scholar 

  • Thorn V, DeConto R (2006) Antarctic climate at the eocene/oligocene boundary-climate model sensitivity to high latitude vegetation type and comparisons with the palaeobotanical record. Palaeogeogr Palaeoclimatol Palaeoecol 231(1–2):134–157

    Article  Google Scholar 

  • Toniazzo T, Gregory J, Huybrechts P (2004) Climatic impact of a Greenland deglaciation and its possible irreversibility. J Clim 17(1):21–33

    Article  Google Scholar 

  • Van Der Burgh J, Visscher H, Dilcher D, Kurschner W (1993) Paleoatmospheric signatures in neogene fossil leaves. Science 260(5115):1788

    Article  Google Scholar 

  • Vavrus S (1999) The response of the coupled Arctic sea ice-atmosphere system to orbital forcing and ice motion at 6 and 115 kyr BP. J Clim 12(3):873–896

    Article  Google Scholar 

  • Verbitsky M, Oglesby R (1992) The effect of atmospheric carbon dioxide concentration on continental glaciation of the northern hemisphere. J Geophys Res Atmos 97(D5):5895–5909

    Google Scholar 

  • Vettoretti G, Peltier W (2003) Post-eemian glacial inception. Part I: The impact of summer seasonal temperature bias. J Clim 16(6):889–911

    Article  Google Scholar 

  • Vettoretti G, Peltier W (2004) Sensitivity of glacial inception to orbital and greenhouse gas climate forcing. Quat Sci Rev 23(3–4):499–519

    Article  Google Scholar 

  • Wang Z, Mysak L (2002) Simulation of the last glacial inception and rapid ice sheet growth in the McGill paleoclimate model. Geophys Res Lett 29(23):2102

    Article  Google Scholar 

  • Wang Y, Mysak L, Wang Z, Brovkin V (2005) The greening of the McGill paleoclimate model. Part I: Improved land surface scheme with vegetation dynamics. Clim Dyn 24(5):469–480

    Article  Google Scholar 

  • Webb R, Rosenzweig C, Levine E (1993) Specifying land surface characteristics in general circulation models: soil profile data set and derived water-holding capacities. Global Biogeochem Cycles 7(1):97–108

    Google Scholar 

  • Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard M, Brand T, Hofreiter M, Bunce M, Poinar H, Dahl-Jensen D et al (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317(5834):111

    Article  Google Scholar 

  • Wohlfahrt J, Harrison S, Braconnot P (2004) Synergistic feedbacks between ocean and vegetation on mid-and high-latitude climates during the mid-holocene. Clim Dyn 22(2):223–238

    Article  Google Scholar 

  • Wohlfahrt J, Harrison S, Braconnot P, Hewitt C, Kitoh A, Mikolajewicz U, Otto-Bliesner B, Weber S (2008) Evaluation of coupled ocean–atmosphere simulations of the mid-holocene using palaeovegetation data from the northern hemisphere extratropics. Clim Dyn 31(7):871–890

    Article  Google Scholar 

  • Yoshimori M, Weaver A, Marshall S, Clarke G (2001) Glacial termination: sensitivity to orbital and CO2 forcing in a coupled climate system model. Clim Dyn 17(8):571–588

    Article  Google Scholar 

  • Yoshimori M, Reader M, Weaver A, McFarlane N (2002) On the causes of glacial inception at 116 ka BP. Clim Dyn 18(5):383–402

    Article  Google Scholar 

Download references

Acknowledgments

This material is based on work supported by the US National Science Foundation under the award ATM-0513402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian J. Koenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenig, S.J., DeConto, R.M. & Pollard, D. Late Pliocene to Pleistocene sensitivity of the Greenland Ice Sheet in response to external forcing and internal feedbacks. Clim Dyn 37, 1247–1268 (2011). https://doi.org/10.1007/s00382-011-1050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1050-0

keywords

Navigation