Skip to main content
Log in

Implementation of a one-dimensional enthalpy sea-ice model in a simple pycnocline prediction model for sea-ice data assimilation studies

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

To further explore enthalpy-based sea-ice assimilation, a one-dimensional (1D) enthalpy sea-ice model is implemented into a simple pycnocline prediction model. The 1D enthalpy sea-ice model includes the physical processes such as brine expulsion, flushing, and salt diffusion. After being coupled with the atmosphere and ocean components, the enthalpy sea-ice model can be integrated stably and serves as an important modulator of model variability. Results from a twin experiment show that the sea-ice data assimilation in the enthalpy space can produce smaller root-mean-square errors of model variables than the traditional scheme that assimilates the observations of ice concentration, especially for slow-varying states. This study provides some insights into the improvement of sea-ice data assimilation in a coupled general circulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903.

    Article  Google Scholar 

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634–642.

    Article  Google Scholar 

  • Alexiades, V., and A. D. Solomon, 1993: Mathematical Modelling of Melting and Freezing Processes. Taylor & Francis, 323 pp.

    Google Scholar 

  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490.

    Article  Google Scholar 

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619.

    Article  Google Scholar 

  • Cox, G. F. N., and W. F. Weeks, 1975: Brine drainage and initial salt entrapment in sodium chloride ice. CRREL Res. Rept. 345, U.S. Army Cold Reg. Res. and Eng. Lab., Hanover, NH, US.

    Google Scholar 

  • Eicken, H., H. R. Krouse, D. Kadko, and D. K. Perovich., 2002: Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res., 107(C10), SHE 22-1–SHE 22–20. doi: 10.1029/2000JC000583.

    Google Scholar 

  • Eicken, H., T. C. Grenfell, D. K. Perovich, J. A. Richter-Menge, and K. Frey, 2004: Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res., 109(C8), C08007, doi: 10.1029/2003JC001989.

    Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.

    Article  Google Scholar 

  • Flato, G. M., and W. D. Hibler III, 1990: On a simple sea-ice dynamics model for climate studies. Annals of Glaciology, 14, 72–77.

    Google Scholar 

  • Freitag, J., 1999: Untersuchungen zur Hydrologie des arktischen Meereises: Konsequenzen für den kleinskaligen Stofftransport = The hydraulic properties of Arctic sea-ice: Implications for the small scale particle transport, Berichte zur Polarforschung (Reports on Polar Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, No. 325, 150 pp.

    Google Scholar 

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 2077–2079.

    Article  Google Scholar 

  • Lindsay, R.W., and J. Zhang, 2006: Assimilation of ice concentration in an ice-ocean model. J. Atmos. Oceanic Technol., 23, 742–749.

    Article  Google Scholar 

  • Lisæter, K. A., J. Rosanova, and G. Evensen, 2003: Assimilation of ice concentration in a coupled ice-ocean model, using the ensemble Kalman filter. Ocean Dyn., 53, 368–388.

    Article  Google Scholar 

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.

    Article  Google Scholar 

  • Lorenz, E. N., 1984: A very narrow spectral band. Journal of Statistical Physics, 36, 1–14.

    Article  Google Scholar 

  • Mellor, G. L., and L. H. Kantha, 1989: An ice-ocean coupled model. J. Geophys. Res., 94(C4), 10937–10954.

    Article  Google Scholar 

  • Notz, D., 2005: Thermodynamics and fluid-dynamical processes in sea ice. PhD dissertation, University of Cambridge, 238 pp.

    Google Scholar 

  • Notz, D., and M. G. Worster, 2006: A one-dimensional enthalpy model of sea ice. Annals of Glaciology, 44, 123–128.

    Article  Google Scholar 

  • Pritchard, R. S., G. Li, and G. F. N. Cox, 2010: A simple sea ice drift forecast model. 20th IAHR International Symposium on Ice, Lahti, Finland, 12 pp.

    Google Scholar 

  • Robert, A., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG Symposium on NWP. Japan Meteorological Society, Tokyo, Japan, 19–24.

    Google Scholar 

  • Saltzman, B., 1962: Finite amplitude free convection as an initial value problem–I. J. Atmos. Sci., 19, 329–341.

    Article  Google Scholar 

  • Stark, J. D., J. Ridley, M. Martin, and A. Hines, 2008: Sea ice concentration and motion assimilation in a sea ice-ocean model. J. Geophys. Res., 113, C05S91, doi: 10.1029/2007JC004224.

    Google Scholar 

  • Toyoda, T., and Coauthors, 2011: Impact of the assimilation of sea ice concentration data on an Atmosphere-Ocean-sea ice coupled simulation of the Arctic Ocean climate. Scientific Online Letters on the Atmosphere (SOLA), 7, 37–40, doi: 10.2151/sola.2011-010, 037-040.

    Google Scholar 

  • Untersteiner, N. 1968: Natural desalination and equilibrium salinity profile of perennial sea ice. J. Geophys. Res., 73(4), 1251–1257.

    Article  Google Scholar 

  • Walsh, J. E., 1983: The role of sea-ice in climate variability: Theories and evidence. Atmosphere-Ocean, 3, 229–242.

    Article  Google Scholar 

  • Worster, M. G., 1992: The dynamics of mushy layers. Interactive dynamics of convection and solidification: proceedings of the NATO Advanced Study Institute held at Chamonix, S. H. Davis et al., Eds., France. London, Kluwer Academic, 113–138.

    Chapter  Google Scholar 

  • Zhang, S., and J. L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus A, 55, 126–147.

    Article  Google Scholar 

  • Zhang, S., J. L. Anderson, A. Rosati, M. J. Harrison, S. P. Khare, and A. Wittenberg, 2004: Multiple time level adjustment for data assimilation. Tellus A, 56, 2–15.

    Article  Google Scholar 

  • Zhang, S., 2011a: Impact of Observation-optimized model parameters on decadal predictions: Simulation with a simple pycnocline prediction model. Geophys. Res. Lett., 38, L02702, doi: 10.1029/2010GL046133.

    Google Scholar 

  • Zhang, S., 2011b: A study of impacts of coupled model initial shocks and State-Parameter optimization on climate predictions using a simple pycnocline prediction model. J. Climate, 24, 6210–6226, doi: 10.1175/JCLI-D-10-05003.

    Article  Google Scholar 

  • Zhang, S., M. Winton, A. Rosati, T. Delworth, and B. Huang, 2013: Impact of enthalpy-based ensemble filtering sea-ice data assimilation on decadal predictions: Simulation with a simple pycnocline prediction model. J. Climate, 26, 2368–2378, doi: 10.1175/JCLI-D-11-00714.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinrong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, S. & Liu, Z. Implementation of a one-dimensional enthalpy sea-ice model in a simple pycnocline prediction model for sea-ice data assimilation studies. Adv. Atmos. Sci. 33, 193–207 (2016). https://doi.org/10.1007/s00376-015-5099-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5099-2

Keywords

Navigation