Skip to main content
Log in

New insights into slide processes and seafloor geology revealed by side-scan imagery of the massive Hinlopen Slide, Arctic Ocean margin

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The submarine Hinlopen Slide, located along the Arctic Ocean margin, is one of the largest known mass movements on Earth. The slide scar has several unusual morphometric characteristics, including headwalls up to 1,500 m high and spectacularly large, steep-sided rafted megablocks. The slide processes and continental margin properties that produced these features are not well known. A new high-resolution TOBI (towed ocean bottom instrument) side-scan sonar dataset reveals information about the detailed seafloor morphology and, therefore, slide dynamics during the final stages of sliding. First, the headwall area was efficiently and almost completely evacuated of slide debris, which is unusual for large submarine slides. Second, features relating to the propagation of extension to the shelf behind the headwall are absent, suggesting “strong” cohesive shelf material here or that a very stable shelf configuration was reached, possibly defined by NE-SW-trending faults. Third, there is little evidence for the translation of shelf material, again uncommon for submarine slides. Taken together with the occurrence of massive megablocks in the slide debris, Hinlopen Slide is distinct because of the juxtaposition of apparently “stronger” shelf material that has remained intact (headwalls, megablocks), and “weaker” shelf material that disaggregated fully during slope failure. Nevertheless, there is sonograph evidence of variable post-slide disintegration of the megablocks. Contrary to previous interpretations, this suggests that the blocks comprise sedimentary lithologies that are prone to failure, a key aspect awaiting confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Batchelor CL, Dowdeswell JA, Hogan KA (2011) Late Quaternary ice flow and sediment delivery through Hinlopen Trough, northern Svalbard margin: submarine landforms and depositional fan. Mar Geol 284:13–27

    Article  Google Scholar 

  • Blondel P, Murton BJ (1997) Handbook of seafloor sonar imagery. Wiley, Hoboken

    Google Scholar 

  • Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga Slide. Mar Pet Geol 22:11–19

    Article  Google Scholar 

  • Bugge T, Befring S, Belderson RH, Eidvin T, Jansen E, Kenyon NH, Holtedahl H, Sejrup HP (1987) A giant three-stage submarine slide off Norway. Geo-Mar Lett 7:191–198. doi:10.1007/BF02242771

    Article  Google Scholar 

  • Bull S, Cartwright J, Huuse M (2009) A review of kinematic indicators from mass-transport complexes using 3D seismic data. Mar Pet Geol 26:1132–1151

    Article  Google Scholar 

  • Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Haflidason H, Imbo Y, Laberg JS, Locat J, Long D, Longva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213:9–72

    Article  Google Scholar 

  • Carlson PR, Karl HA (1988) Development of large submarine canyons in the Bering Sea, indicated by morphologic, seismic and sedimentologic characteristics. Geol Soc Am Bull 100:1594–1615

    Article  Google Scholar 

  • Cherkis NZ, Max MD, Vogt PR, Crane K, Midthassel A, Sundvor E (1999) Large-scale mass wasting on the north Spitsbergen continental margin, Arctic Ocean. Geo-Mar Lett 19:131–142. doi:10.1007/s003670050100

    Article  Google Scholar 

  • Collier JS, Brown CJ (2005) Correlation of the sidescan backscatter with grain size distribution of surficial sediments. Mar Geol 214:431–449

    Article  Google Scholar 

  • Dowdeswell JA (1989) On the nature of Svalbard icebergs. J Glaciol 35:224–234

    Google Scholar 

  • Dowdeswell JA, Forsberg CF (1992) The size and frequency of icebergs and bergy bits from tidewater glaciers in Kongsfjorden, north-west Spitsbergen. Polar Res 11:81–91

    Article  Google Scholar 

  • Dowdeswell JA, Kenyon NH, Laberg JS (1997) The glacier-influenced Scoresby Sund Fan, East Greenland continental margin: evidence from GLORIA and 3.5 kHz records. Mar Geol 143:207–221

    Article  Google Scholar 

  • Dowdeswell JA, Ó Cofaigh C, Pudsey CJ (2004) Continental slope morphology and sedimentary processes at the mouth of an Antarctic palaeo-ice stream. Mar Geol 204:203–214

    Article  Google Scholar 

  • Dowdeswell JA, Ottesen D, Rise L (2006) Flow-switching and large-scale deposition by ice streams draining former ice sheets. Geology 34:313–316

    Article  Google Scholar 

  • Dowdeswell JA, Jakobsson M, Hogan KA, O'Regan M, Backman J, Evans J, Hell B, Löwemark L, Marcussen C, Noormets R, Ó Cofaigh C, Sellén E, Sölvsten M (2010a) High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin: implications for ice-sheet grounding and deep-keeled icebergs. Quat Sci Rev 29:3518–3531

    Article  Google Scholar 

  • Dowdeswell JA, Hogan KA, Evans J, Noormets R, Ó Cofaigh C, Ottesen D (2010b) Past ice-sheet flow east of Svalbard inferred from streamlined subglacial landforms. Geology 38:163–166

    Article  Google Scholar 

  • Eiken O (1993) An outline of the northwestern Svalbard continental margin. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. NPF Spec Publ 2:619–629

  • Evans D, Harrison Z, Shannon PE, Laberg JS, Nielsen T, Ayers S, Holmes R, Hoult RJ, Lindberg B, Haflidason H, Long D, Kuijpers A, Andersen ES, Bryn P (2005) Palaeoslides and other mass failures of Pliocene to Pleistocene age along the Atlantic continental margin of NW Europe. Mar Pet Geol 22:1131–1148

    Article  Google Scholar 

  • Flewellen C, Millard N, Rouse I (1993) TOBI, a vehicle for deep ocean survey. Electron Commun Eng J 5:85–93

    Article  Google Scholar 

  • Frey Martinez J, Cartwright J, Hall B (2005) 3D seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res 17:83–108

    Article  Google Scholar 

  • Gee MJR, Gawthorpe RL, Friedmann JS (2005) Giant striations at the base of a submarine landslide. Mar Geol 214:287–294

    Article  Google Scholar 

  • Geissler WH, Jokat W (2004) A geophysical study of the northern Svalbard continental margin. Geophys J Int 158:50–66

    Article  Google Scholar 

  • Geissler WH, Jokat W, Brekke H (2011) The Yermak Plateau in the Arctic Ocean in the light of reflection seismic data—implication for its tectonic and sedimentary evolution. Geophys J Int 187:1334–1362

    Article  Google Scholar 

  • Goff JA, Olson HC, Duncan CS (2000) Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin. Geo-Mar Lett 20:43–49. doi:10.1007/s003670000032

    Article  Google Scholar 

  • Haflidason H, Gravdal G, Sejrup HP (2003) The northern Storegga Slide escarpment—morphology and features. In: Mienert J, Weaver P (eds) European margin sediment dynamics: side-scan sonar and seismic images. Springer, Berlin, pp 45–53

    Chapter  Google Scholar 

  • Haflidason H, Sejrup HP, Nygård A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson D (2004) The Storegga Slide: architecture, geometry and slide development. Mar Geol 213:201–234

    Article  Google Scholar 

  • Hill TM, Paull CK, Critser RB (2012) Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex. Geo-Mar Lett 32:73–84. doi:10.1007/s00367-011-0258-7

    Article  Google Scholar 

  • Jakobsson M, Mayer L, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke H-W, Zarayskaya Y, Accettella D, Armstrong A, Anderson RM, Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik O, Kristoffersen Y, Marcussen C, Mohammad R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys Res Lett 39, L12609

    Google Scholar 

  • King EL, Sejrup HP, Haflidason H, Elverhøi A, Aarseth I (1996) Quaternary seismic stratigraphy of the North Sea Fan: glacially fed gravity flow aprons, hemipelagic sediments, and large submarine slides. Mar Geol 130:293–315

    Article  Google Scholar 

  • Kvalstad TJ, Andresen L, Forsberg CF, Berg K, Bryn P, Wangen M (2005) The Storegga slide: evaluation of triggering sources and slide mechanics. Mar Pet Geol 22:245–256

    Article  Google Scholar 

  • Laberg JS, Vorren TO (1995) Late Weichselian submarine debris flow deposits on the Bear Island Trough Mouth Fan. Mar Geol 127:45–72

    Article  Google Scholar 

  • Laberg JS, Vorren TO (2000) The Trænadjupet Slide, offshore Norway—morphology, evacuation and triggering mechanisms. Mar Geol 171:95–114

    Article  Google Scholar 

  • Laberg JS, Vorren TO, Dowdeswell JA, Kenyon NH, Taylor J (2000) The Andøya Slide and the Andøya Canyon, north-eastern Norwegian-Greenland Sea. Mar Geol 162:259–275

    Article  Google Scholar 

  • Landvik JY, Bondevik S, Elverhøi A, Fjeldskaar W, Mangerud J, Salvigsen O, Siegert MJ, Svendsen J-I, Vorren TO (1998) The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quat Sci Rev 17:43–75

    Article  Google Scholar 

  • Lastras G, Canals M, Hughes-Clarke JE, Moreno A, De Batist M, Masson DG, Cochonat P (2002) Seafloor imagery from the BIG'95 debris flow, western Mediterranean. Geology 30:871–874

    Article  Google Scholar 

  • Lastras G, Canals M, Urgeles R, De Batist M, Calafat AM, Casamor JL (2004) Characterisation of the recent BIG'95 debris flow deposit on the Ebro margin, Western Mediterranean Sea, after a variety of seismic reflection data. Mar Geol 213:235–255

    Article  Google Scholar 

  • Le Bas TP, Mason DC, Millard NC (1995) TOBI image processing—the state of the art. IEEE J Ocean Eng 20:85–93

    Article  Google Scholar 

  • Leynaud D, Mienert J, Vanneste M (2009) Submarine mass movements on glaciated and non-glaciated European continental margins: a review of triggering mechanisms and preconditions to failure. Mar Pet Geol 26:618–632

    Article  Google Scholar 

  • Masson DG, Huggett QJ, Brundsen D (1993) The surface texture of the Saharan Debris Flow deposit and some speculations on submarine debris flow processes. Sedimentology 40:583–598

    Article  Google Scholar 

  • Masson DG, Canals M, Alonso B, Urgeles R, Huhnerbach V (1998) The Canary debris flow: source area morphology and failure mechanisms. Sedimentology 45:411–432

    Article  Google Scholar 

  • Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57:1–35

    Article  Google Scholar 

  • Mienert J (2009) Methane hydrate and submarine slides. In: Encyclopedia of Ocean Sciences, 2nd edn. Academic Press, Waltham, pp 790–798

  • Mitchell NC (2004) Form of submarine erosion from confluences in Atlantic USA continental slope canyons. Am J Sci 304:590–611

    Article  Google Scholar 

  • Mulder T, Cochonat P (1996) Classification of offshore mass movements. J Sed Res 66:43–57

    Google Scholar 

  • Noormets R, Dowdeswell JA, Larter RD, O’Cofaigh C, Evans J (2009) Morphology of the upper continental slope in the Bellingshausen and Amundsen seas—implications for sedimentary processes at the shelf edge of West Antarctica. Mar Geol 258:100–114

    Article  Google Scholar 

  • Nygård A, Sejrup HP, Haflidason H, King EL (2002) Geometry and genesis of glacigenic debris flows on the North Sea Fan: TOBI imagery and deep-tow boomer evidence. Mar Geol 188:15–33

    Article  Google Scholar 

  • Ó Cofaigh C, Dunlop P, Benetti S (2012) Marine geophysical evidence for Late Pleistocene ice sheet extent and recession off northwest Ireland. Quat Sci Rev 44:147–159

    Article  Google Scholar 

  • Ottesen D, Dowdeswell JA, Landvik JY, Mienert J (2007) Dynamics of the Late Weichselian ice sheet on Svalbard inferred from high-resolution sea-floor morphology. Boreas 36:286–306

    Article  Google Scholar 

  • Philip H, Ritz JF (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology 27:211–214

    Article  Google Scholar 

  • Posamentier HW, Kolla V (2003) Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. J Sed Res 73:367–388

    Article  Google Scholar 

  • Prior DB, Bornhold BD, Johns MW (1984) Depositional characteristics of a submarine debris flow. J Geol 92:707–727

    Article  Google Scholar 

  • Shepard FP (1981) Submarine canyons: multiple causes and long-time persistence. Bull Am Assoc Pet Geol 65:1062–1077

    Google Scholar 

  • Stein R (ed) (2005) Scientific Cruise Report of the Arctic Expedition ARK-XX/3 of RV Polarstern in 2004: Fram Strait, Yermak Plateau and East Greenland Continental Margin. Reports on Polar and Marine Research no 517. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven

  • Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingólfsson Ó, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud J, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271

    Article  Google Scholar 

  • Taylor J, Dowdeswell JA, Kenyon NH, Whittington RJ, Van Weering TCE, Mienert J (2000) Morphology and Late Quaternary sedimentation on the North Faeroes slope and abyssal plain, North Atlantic. Mar Geol 168:1–24

    Article  Google Scholar 

  • Taylor J, Dowdeswell JA, Kenyon NH, Ó Cofaigh C (2002) Late Quaternary architecture of trough-mouth fans: debris flows and suspended sediments on the Norwegian margin. In: Dowdeswell JA, Ó Cofaigh C (eds) Glacier-influenced sedimentation on high-latitude continental margins. Geol Soc Lond Spec Publ 203:55–71

  • Twichell DC, Chayton JD, ten Brink US, Buczkowski B (2009) Morphology and late Quaternary submarine landslides along the U.S. Atlantic continental margin. Mar Geol 264:4–15

    Article  Google Scholar 

  • Urick RJ (1983) Principles of underwater sound. McGraw-Hill, New York

    Google Scholar 

  • Vanneste M, Mienert J, Bunz S (2006) The Hinlopen Slide: a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean. Earth Planet Sci Lett 245:373–388

    Article  Google Scholar 

  • Vanneste M, Harbitz CB, De Blasio FV, Glimsdal S, Mienert J, Elverhøi A (2011) Hinlopen-Yermak Landslide, Arctic Ocean—geomorphology, landslide dynamics, and tsunami simulations. In: Shipp RC, Weimer P, Posamentier HW (eds) Mass-transport deposits in deepwater settings. SEPM Spec Publ 96:509–529

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control. National Academy of Sciences Special Report 176, Washington, pp 11–33

  • Vorren TO, Laberg JS, Blaume F, Dowdeswell JA, Kenyon NH, Mienert J, Rumohr J, Werner F (1998) The Norwegian-Greenland Sea continental margins: morphology and late Quaternary sedimentary processes and environment. Quat Sci Rev 17:273–302

    Article  Google Scholar 

  • Wilson CK, Long D, Bulat J (2004) The morphology, setting and processes of the Afen Slide. Mar Geol 213:149–167

    Article  Google Scholar 

  • Winkelmann D, Stein R (2007) Triggering of the Hinlopen/Yermak Megaslide in relation to paleoceanography and climate history of the continental margin north of Spitsbergen. Geochem Geophys Geosyst 8, Q06018. doi:10.1029/2006GC001485

    Article  Google Scholar 

  • Winkelmann D, Jokat W, Niessen F, Stein R, Winkler A (2006) Age and extent of the Yermak Slide north of Spitsbergen, Arctic Ocean. Geochem Geophys Geosyst 7, Q06007. doi:10.1029/2005GC001130

    Article  Google Scholar 

  • Winkelmann D, Geissler W, Schneider J, Stein R (2008) Dynamics and timing of the Hinlopen/Yermak Megaslide north of Spitsbergen, Arctic Ocean. Mar Geol 250:34–50

    Article  Google Scholar 

  • Winkelmann D, Geissler WH, Stein R, Niessen F (2010) Post-megaslide slope stability north of Svalbard, Arctic Ocean. In: Moscher DC, Moscardelli L, Baxter CDP, Urgeles R, Shipp RC, Chaytor JD, Lee HJ (eds) Submarine mass movements and their consequences, Advances in natural and technological hazards research, vol 28. Springer, Dordrecht, pp 279–287

    Google Scholar 

  • Yang SL, Kvalstad T, Solheim A, Forsberg CF (2006) Parameter studies of sediments in the Storegga Slide region. Geo-Mar Lett 26:213–224. doi:10.1007/s00367-006-0023-5

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by UK NERC Grant NER/T/S/2003/00318 to JAD, and the Prince Albert II of Monaco Foundation. The contents of this document are solely the liability of K. Hogan and co-authors and under no circumstances may be considered as a reflection of the Prince Albert II of Monaco Foundation’s position. We thank the officers and crew of the R.R.S. James Clark Ross for their assistance during cruise JR142 to the east Svalbard margin, as well as Riko Noormets, Colm Ó Cofaigh, Jeff Evans, Ruth Mugford and the NMF TOBI engineers for assisting with geophysical data acquisition. Maarten Vanneste and Steinar Iversen are gratefully acknowledged for processing the bathymetric data collected by the R/V Jan Mayen in 2004, and Tim Le Bas for help in processing the side-scan sonar data. Insightful comments from Pete Talling, and careful reading by Burg Flemming and Monique Delafontaine helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Hogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, K.A., Dowdeswell, J.A. & Mienert, J. New insights into slide processes and seafloor geology revealed by side-scan imagery of the massive Hinlopen Slide, Arctic Ocean margin. Geo-Mar Lett 33, 325–343 (2013). https://doi.org/10.1007/s00367-013-0330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-013-0330-6

Keywords

Navigation