Skip to main content

Advertisement

Log in

Evidence for climatic and oceanographic controls on terrigenous sediment supply to the Indian Ocean sector of the Southern Ocean over the past 63,000 years

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Multiple proxy studies on sediment core SK 200/22a from the sub-Antarctic sector of the Indian Ocean revealed millennial-scale fluctuations in terrigenous input during the last 63,000 years. The marine isotope stages 1 (MIS 1) and MIS 3 are characterized by generally low concentrations of magnetic minerals, being dominated by fine-grained magnetite and titano-magnetite. Within the chronological constraints, periods of enhanced terrigenous input and calcite productivity over the last 63,000 years are nearly synchronous with the warming events recorded in Antarctic ice cores. An equatorward shift of the westerly wind system in association with a strengthening of the Antarctic Circumpolar Current (ACC) system may have promoted wind-induced shallow-water erosion around oceanic islands, leading to enhanced terrigenous input to the core site. Major ice-rafted debris events at 13–23, 25–30, 45–48 and 55–58 ka BP are asynchronous with δ18O and carbonate productivity records. This out-of-phase relation suggests that ice-sheet dynamics and ACC intensity were the primary factors influencing ice rafting and terrigenous input to the Indian sector of the Southern Ocean, with only limited support from sea-surface warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson RF, Ali S, Bradtmiller LI, Nielsen SHH, Fleisher MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 13:1443–1448

    Article  Google Scholar 

  • Andres MS, Bernasconi SM, McKenzie JA, Rohl U (2003) Southern Ocean deglacial record supports global Younger Dryas. Earth Planet Sci Lett 216:515–524

    Article  Google Scholar 

  • Anilkumar N, Pednekar SM, Sudhakar M (2007) Influence of ridges on hydrographic parameters in the Southwest Indian Ocean. Mar Geophys Res 28:191–199. doi:10.1007/s11001-007-9026-5

    Article  Google Scholar 

  • Bae SH, Yoon HI, Park B-K, Kim Y (2003) Late Quaternary stable isotope record and meltwater discharge anomaly events to the south of the Antarctic Polar Front, Drake Passage. Geo-Mar Lett 23:110–116. doi:10.1007/s00367-003-0129-y

    Article  Google Scholar 

  • Bareille G, Grousset FE, Labracherie M, Labeyrie LD, Petit JR (1994) Origin of detrital fluxes in the southeast Indian Ocean during the last climate cycles. Paleoceanography 9:799–819

    Article  Google Scholar 

  • Bareille G, Labracherie M, Bertrand P, Labeyrie L, Lavaux G, Dignan M (1998) Glacial–interglacial changes in the accumulation rates of major biogenic components in Southern Indian Ocean sediments. J Mar Syst 17:527–539

    Article  Google Scholar 

  • Barrows TT, Juggins S, De Deckker P, Calvo E, Pelejero C (2007) Long-term sea-surface temperature and climate change in the Australian-New Zealand region. Paleoceanography 22:PA2215. doi:10.1029/2006PA001328

    Article  Google Scholar 

  • Baumann KH, Lackschewitz KS, Mangerud J, Spielhagen RF, Wolf-Welling TCW, Henrich R, Kassens H (1995) Reflection of Scandinavian Ice Sheet fluctuations in Norwegian Sea sediments during the last 150,000 years. Quat Res 43:185–197

    Article  Google Scholar 

  • Berger WH, Wefer G (1996) Expeditions into the past: paleoceanographic studies in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic – Present and past circulation. Springer, Berlin, pp 363–410

    Google Scholar 

  • Bloemendal J, Lamb B, King KW (1988) Paleoenvironmental implications of rock-magnetic properties of late Quaternary sediment cores from the eastern equatorial Atlantic. Paleoceanography 3:61–87

    Article  Google Scholar 

  • Bloemendal J, King JW, Hall FR, Doh SJ (1992) Rock-magnetism of late Neogene and Pleistocene deep-sea sediments: relationship of sediment source, diagenetic processes and sediment lithology. J Geophys Res 97:4361–4375

    Article  Google Scholar 

  • Blunier T, Brook EJ (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291:109–112

    Article  Google Scholar 

  • Carter L, Neil HL, McCave IN (2000) Glacial to interglacial changes in non-carbonate and carbonate accumulation in the SW Pacific Ocean, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 162:333–356

    Article  Google Scholar 

  • Carter L, Neil HL, Northcote L (2002) Late Quaternary ice-rafting events in the SW Pacific, off eastern New Zealand. Mar Geol 191:19–35

    Article  Google Scholar 

  • Chase Z, Anderson RF, Fleisher MQ, Kubik PW (2003) Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep-Sea Res II 50:799–832

    Article  Google Scholar 

  • Cook DW, Hays JD (1982) Estimates of Antarctic Ocean seasonal sea-ice cover during glacial intervals. In: Craddock C (ed) Antarctic geoscience. University of Wisconsin, Madison, pp 1017–1025

    Google Scholar 

  • Dezileau L, Bareille G, Reyss JL, Lemoine F (2000) Evidence for strong sediment redistribution by bottom currents along the southeast Indian ridge. Deep-Sea Res I 47:1899–1936

    Article  Google Scholar 

  • Diekmann B (2007) Sedimentary patterns in the late Quaternary Southern Ocean. Deep-Sea Res II 54:2350–2366

    Article  Google Scholar 

  • Diekmann B, Kuhn G, Gersonde R, Mackensen A (2004) Middle Eocene to early Miocene environmental changes in the sub-Antarctic Southern Ocean: evidence from biogenic and terrigenous depositional patterns at ODP Site 1090. Global Planet Change 40:295–313

    Article  Google Scholar 

  • EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198

    Article  Google Scholar 

  • Filippelli GM, Latimer JC, Murray RW, Flores JA (2007) Productivity records from the Southern Ocean and the equatorial Pacific Ocean: testing the glacial shelf-nutrient hypothesis. Deep-Sea Res II 54:2443–2452

    Article  Google Scholar 

  • Gaiero DM, Depetris PJ, Probst JL, Bidart SM, Leleyter L (2004) The signature of river- and wind-borne materials exported from Patagonia to the southern latitudes: a view from REEs and implications for paleoclimatic interpretations. Earth Planet Sci Lett 219:357–376

    Article  Google Scholar 

  • Gaiero DM, Brunet F, Probst J-L, Depetris PJ (2007) A uniform isotopic and chemical signature of dust exported from Patagonia: rock sources and occurrence in southern environments. Chem Geol 238:107–120

    Article  Google Scholar 

  • Gamberoni L, Geronimi J, Jeannin P, Murail JF (1982) Study of frontal zones in the Crozet-Kerguelen region. Oceanol Acta 5:289–299

    Google Scholar 

  • Grobe H, Mackensen A (1992) Late Quaternary climatic cycles as recorded in sediments from the Antarctic continental margin. In: Kennett JP, Warnke DA (eds) The Antarctic paleoenvironment: a perspective on global change (Pt. 1). Antarct Res Ser 56:349–376

  • Hillenbrand CD, Moreton SG, Caburlotto A, Pudsey CJ, Lucchi RG, Smellie JL, Benetti S, Grobe H, Hunt JB, Larter RD (2008) Volcanic time-markers for marine isotopic stages 6 and 5 in Southern Ocean sediments and Antarctic ice cores: implications for tephra correlations between palaeoclimatic records. Quat Sci Rev 27(5/6):518–540

    Article  Google Scholar 

  • Howard WR, Prell WL (1994) Late Quaternary CaCO3 production and preservation in the Southern Ocean: implications for oceanic and atmospheric carbon cycling. Paleoecanography 9:453–482

    Article  Google Scholar 

  • Howe JA, Pudsey CJ (1999) Antarctic circumpolar deep water: a Quaternary paleoflow record from the northern Scotia Sea, South Atlantic Ocean. J Sediment Res 69:847–861

    Google Scholar 

  • Kanfoush SL, Hodell DA, Charles CD, Gullderson TP, Mortyn PG, Ninnemann US (2000) Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science 288:1815–1818

    Article  Google Scholar 

  • Kanfoush SL, Hodell DA, Charles CD, Janecek TR, Rack FR (2002) Comparison of ice-rafted debris and physical properties in ODP Site 1094 (South Atlantic) with the Vostok ice core over the last four climatic cycles. Paleoceanography 182:329–349

    Google Scholar 

  • Karlin R (1990) Magnetic diagenesis in marine sediments from the Oregon continental margin. J Geophys Res 95:4405–4419

    Article  Google Scholar 

  • Kennett JP, Barron JA (1992) The Antarctic paleoenvironment: a perspective on global change, vol 56. American Geophysical Union, Washington, DC, pp 1–6

  • Kolla V, Bé AWH, Biscaye PE (1976) Calcium carbonate distribution in the surface sediments of the Indian Ocean. J Geophys Res 81:2605–2616

    Article  Google Scholar 

  • Labeyrie LD, Pichon JJ, Labracherie M, Ippolito P, Duprat J, Duplessy JC (1986) Melting history of Antarctica during the past 60,000 years. Nature 322:701–706

    Article  Google Scholar 

  • Labeyrie L, Labracherie M, Gorfti N, Pichon JJ, Duprat J, Vautravers M, Arnold M, Duplessy JC, Paterne M, Michel E, Caralp J, Turon JL (1996) Hydrographic changes of the Southern Ocean (south-east Indian sector) over the last 230 ka. Paleoceanography 11:57–76

    Article  Google Scholar 

  • Lamy F, Kaiser J, Ninnemann U, Hebbeln D, Arz H, Stoner J (2004) Antarctic timing of surface water changes of Chile and Patagonian ice sheet response. Science 304:1959–1962

    Article  Google Scholar 

  • Lamy F, Kaiser J, Arz HW, Hebbeln D, Ninnemann U, Timm O, Timmermann A, Toggweiler JR (2007) Modulation of the bipolar seesaw in the southeast pacific during Termination 1. Earth Planet Sci Lett 259:400–413

    Article  Google Scholar 

  • Latimer JC, Filippelli GM, Hendy IL, Gleason JD, Blum JD (2006) Terrigenous provenance in the southeastern Atlantic Ocean. Geology 34:545–548

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071

    Article  Google Scholar 

  • Liu Q, Roberts AP, Torrent J, Horng C-S, Larrasoaña JC (2007) What do the HIRM and S-ratio really measure in environmental magnetism? Geochem Geophys Geosyst 8:Q09011. doi:10.1029/2007GC001717

    Article  Google Scholar 

  • Marsh R, Mills RA, Green DRH, Salter I, Taylor S (2007) Controls on sediment geochemistry in the Crozet region. Deep-Sea Res II 54:2260–2274

    Article  Google Scholar 

  • Martínez-Garcia A, Rosell-Melé A, Jaccard SL, Geibert W, Sigman DM, Haug GH (2011) Southern Ocean dust–climate coupling over the past four million years. Nature 476:312–315

    Article  Google Scholar 

  • Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high resolution 0 to 300,000-year chronostratigraphy. Quat Res 27:1–29

    Article  Google Scholar 

  • Mazaud A, Sicre MA, Ezat U, Pichon JJ, Duprat J, Laj C, Kissel C, Beaufort L, Michel E, Turon JL (2002) Geomagnetic-assisted stratigraphy and sea surface temperature changes in core MD94-103 (Southern Indian Ocean): possible implications for North–South climatic relationships around H4. Earth Planet Sci Lett 201:159–170

    Article  Google Scholar 

  • Mazaud A, Kissel C, Laj C, Sicre MA, Michel E, Turon JL (2007) Variations of the ACC-CDW during MIS 3 traced by magnetic grain deposition in midlatitude South Indian Ocean cores: connections with the northern hemisphere and with central Antarctica. Geochem Geophys Geosyst 8:Q05012. doi:10.1029/2006GC001532

    Article  Google Scholar 

  • Mazaud A, Michel E, Dewilde F, Turon JL (2010) Variations of the Antarctic Circumpolar Current intensity during the past 500 ka. Geochem Geophys Geosyst 11:Q08007. doi:10.1029/2010GC003033

    Article  Google Scholar 

  • Neil HL, Carter L, Morris MY (2004) Thermal isolation of Campbell Plateau, New Zealand, by the Antarctic Circumpolar Current over the past 130 kyr. Paleoceanography 19:PA4008. doi:10.1029/2003PA000975

    Article  Google Scholar 

  • Nielsen SHH, Hodell DA, Kamenov G, Guilderson T, Perfit MR (2007) Origin and significance of ice-rafted debris in the Atlantic sector of the Southern Ocean. Geochem Geophys Geosyst 8(12):Q12005. doi:10.1029/2007GC001618

    Article  Google Scholar 

  • Nozaki Y, Alibo DS (2003) Dissolved rare earth elements in the Southern Ocean, southwest of Australia: unique patterns compared to the South Atlantic data. Geochem J 37:47–62

    Article  Google Scholar 

  • Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I 42:641–673

    Article  Google Scholar 

  • Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom Water. Prog Oceanogr 43:55–109

    Article  Google Scholar 

  • Park YH, Gamberoni L, Charriaud E (1993) Frontal structure, water masses and circulation in the Crozet Basin. J Geophys Res 98:361–385

    Google Scholar 

  • Pudsey CJ, Howe JA (1998) Quaternary history of the Antarctic Circumpolar Current: evidence from the Scotia Sea. Mar Geol 83:83–112

    Article  Google Scholar 

  • Pugh RS, McCave IN, Hillenbrand C-D, Kuhn G (2009) Circum-Antarctic age modelling of Quaternary marine cores under the Antarctic Circumpolar Current: ice-core dust–magnetic correlation. Earth Planet Sci Lett 284:113–123

    Article  Google Scholar 

  • Rintoul SR, England MH (2002) Ekman transport dominates local air-sea fluxes in driving variability of Subantarctic Mode Water. J Phys Oceanogr 32:1308–1321

    Article  Google Scholar 

  • Robinson SG, Maslin M, McCave IN (1995) Magnetic susceptibility variations in upper Pleistocene deep-sea sediments of the NE Atlantic: implications for ice rafting and paleocirculation at the last glacial maximum. Paleoceanography 10:221–250

    Article  Google Scholar 

  • Rolph TC, Vigliotti L, Oldfield F (2004) Mineral magnetism and geomagnetic secular variation of marine and lacustrine sediments from central Italy: timing and nature of local and regional Holocene environmental change. Quat Sci Rev 23:1699–1722

    Article  Google Scholar 

  • Sachs JP, Anderson RF (2005) Increased Subantarctic ocean productivity during Heinrich Events. Nature 434:1118–1121

    Article  Google Scholar 

  • Sicre M-A, Labeyrie L, Ezat U, Duprat J, Turon J-L, Schmidt S, Michel E, Mazaud A (2005) Mid-latitude Southern Indian Ocean response to Northern Hemisphere Heinrich events. Earth Planet Sci Lett 240:724–731

    Article  Google Scholar 

  • Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 40:859–869

    Article  Google Scholar 

  • Sparrow MD, Heywood KJ, Brown J, Stevens DP (1996) Current structure of the South Indian Ocean. J Geophys Res 101:6377–6391

    Article  Google Scholar 

  • Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18(4):1087. doi:10.1029/2003PA000920

    Article  Google Scholar 

  • Stoner JS, Channel JET, Hillaire-Marcel C (1996) The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: relationship to North Atlantic Heinrich layers. Paleoceanography 11(3):309–325

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 6.0 [Program and documentation]. http://www.calib.qub.ac.uk/

  • Sugden DA, McCulloch RD, Bory AJ-M, Hein AS (2009) Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nature Geosci 2:281–285

    Article  Google Scholar 

  • Thamban M, Naik SS, Mohan R, Rajakumar A, Basavaiah N, D’Souza W, Kerkar S, Subramaniam MM, Sudhakar M, Pandey PC (2005) Changes in the source and transport mechanism of terrigenous input to the Indian Ocean sector of Southern Ocean during the late Quaternary and its palaeoceanographic implications. J Earth Syst Sci 114:443–452

    Article  Google Scholar 

  • Toggweiler JR, Russell JL, Carson SR (2006) Mid-latitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21:PA2005. doi:10.1029/2005PA001154

    Article  Google Scholar 

  • Verosub KL, Roberts AP (1995) Environmental magnetism: past present and future. J Geophys Res 100:2175–2192

    Article  Google Scholar 

  • Wolff EW, Barbante C, Becagli S, Bigler M, Boutron CF, Castellano E, de Angelis M, Federer U, Fischer H, Fundel F, Hansson M, Hutterli M, Jonsell U, Karlin T, Kaufmann P, Lambert F, Littot GC, Mulvaney R, Röthlisberger R, Ruth U, Severi M, Siggaard-Andersen M-L, Sime LC, Steffensen JP, Stocker TF, Traversi R, Twarloh B, Udisti R, Wagenbach D, Wegner A (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat Sci Rev 29:285–295

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director, National Centre for Antarctic and Ocean Research, and Dr. M. Sudhakar and members of the pilot expedition to the Southern Ocean for their excellent support. Thanks are due to S. Shanavas, Anayat A. Quarshi, B.L. Redkar and Sunayna S. Wadekar for laboratory help and analyses. We also thank two anonymous reviewers and the editors for valuable suggestions which have helped us to improve the manuscript. This is NCAOR Contribution No. 36/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudhanan C. Manoj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoj, M.C., Thamban, M., Basavaiah, N. et al. Evidence for climatic and oceanographic controls on terrigenous sediment supply to the Indian Ocean sector of the Southern Ocean over the past 63,000 years. Geo-Mar Lett 32, 251–265 (2012). https://doi.org/10.1007/s00367-011-0267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-011-0267-6

Keywords

Navigation