Skip to main content
Log in

A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Environmental temperature varies spatially and temporally, affecting many aspects of an organism’s biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altringham JD, Block BA (1997) Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish. J Exp Biol 200:2617–2627

    PubMed  CAS  Google Scholar 

  • Angilletta MJ Jr (2009) Thermal adaptation. A theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Angilletta MJ Jr, Cooper BS, Schuler MS, Boyles JG (2010) The evolution of thermal physiology in endotherms. Front Biosci E2:861–881

    Article  Google Scholar 

  • Ball D, Johnston IA (1996) Molecular mechanisms underlying the plasticity of muscle contractile properties with temperature acclimation in the marine fish Myoxocephalus scorpius. J Exp Biol 199:1363–1373

    PubMed  CAS  Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50:197–216

    Article  PubMed  Google Scholar 

  • Barclay CJ, Woledge RC, Curtin NA (2010) Is the efficiency of mammalian (mouse) skeletal muscle temperature dependent? J Physiol 588(19):3819–3831

    Article  PubMed  CAS  Google Scholar 

  • Beddow TA, Johnston IA (1995) Plasticity of muscle contractile properties following temperature acclimation in the marine fish Myoxocephalus scorpius. J Exp Biol 198:193–201

    PubMed  Google Scholar 

  • Bennett AF (1984) Thermal dependence of muscle function. Am J Physiol 247:R217–R229

    PubMed  CAS  Google Scholar 

  • Bennett AF (1990) Thermal dependence of locomotor capacity. Am J Physiol 259:R253–R258

    PubMed  CAS  Google Scholar 

  • Bernal D, Donley JM, Shadwick RE, Syme DA (2005) Mammal-like muscles power swimming in a cold-water shark. Nature 437:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Bershitsky SY, Tsaturyan AK (2002) The elementary force generation process probed by temperature and length perturbations in muscle fibres from rabbit. J Physiol 540:971–988

    Article  PubMed  CAS  Google Scholar 

  • Boyles JG, Seebacher F, Smit B, McKechnie AE (2011) Adaptive thermoregulation in endotherms may alter responses to climate change. Integr Comp Biol 51:676–690

    Article  PubMed  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312:1477–1478

    Article  PubMed  CAS  Google Scholar 

  • Breau C, Cunjak RA, Peake SJ (2011) Behaviour during elevated water temperatures: can physiology explain movement of juvenile Atlantic salmon to cool water? J Anim Ecol 80:844–853

    Article  PubMed  Google Scholar 

  • Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Nat Acad Sci 83:3542–3546

    Article  PubMed  CAS  Google Scholar 

  • Caiozzo VJ (2002) Plasticity of skeletal muscle phenotype: mechanical consequences. Muscle Nerve 26:740–768

    Article  PubMed  Google Scholar 

  • Cavieres G, Sabat P (2008) Geographic variation in the response to thermal acclimation in rufous-collared sparrows: are physiological flexibility and environmental heterogeneity correlated? Funct Ecol 22:509–515

    Article  Google Scholar 

  • Colombini B, Nocella M, Benelli G, Cecchi G, Bagni MA (2008) Effect of temperature on cross-bridge properties in intact frog muscle fibers. Am J Physiol 294:C1113–C1117

    Article  CAS  Google Scholar 

  • Corp N, Gorman ML, Speakman JR (1997) Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart. J Comp Physiol B 167:229–239

    Article  PubMed  CAS  Google Scholar 

  • Coughlin DJ, Zhang G, Rome LC (1996) Contraction dynamics and power production of pink muscle of the scup (Stenotomus chrysops). J Exp Biol 199:2703–2712

    PubMed  CAS  Google Scholar 

  • Coupland ME, Pinniger GJ, Ranatunga KW (2005) Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres. J Physiol 567:471–492

    Article  PubMed  CAS  Google Scholar 

  • Crockford T, Johnston IA (1990) Temperature acclimation and the expression of contractile protein isoforms in the skeletal muscles of the common carp (Cyprinus carpio L.). J Comp Physiol B 160:23–30

    Article  CAS  Google Scholar 

  • Crowley SR, Pietruszka RD (1983) Aggressiveness and vocalization in the leopard lizard (Gambelia wislizennii): the influence of temperature. Anim Behav 31:1055–1060

    Article  Google Scholar 

  • De Ruiter CJ, De Haan A (2000) Temperature effect on the force/velocity relationship of the fresh and fatigued human adductor pollicis muscle. Pflügers Arch 440:163–170

    PubMed  Google Scholar 

  • Decostre V, Bianco P, Lombardi V, Piazzesi G (2005) Effect of temperature on the working stroke of muscle myosin. PNAS 102:13927–13932

    Article  PubMed  CAS  Google Scholar 

  • Donley JM, Shadwick RE, Sepulveda CA, Syme DA (2007) Thermal dependence of contractile properties of the aerobic locomotor muscle in the leopard shark and shortfin mako shark. J Exp Biol 210:1194–1203

    Article  PubMed  Google Scholar 

  • Donley JM, Sepulveda CA, Aalbers SA, McGillivray DG, Syme DA, Bernal D (2012) Effects of temperature on power output and contraction kinetics in the locomotor muscle of the regionally endothermic common thresher shark (Alopias vulpinus). Fish Physiol Biochem 38:1507–1519

    Article  PubMed  CAS  Google Scholar 

  • Ducharme MB, VanHelder WP, Radomski MW (1991) Tissue temperature profile in the human forearm during thermal stress at thermal stability. J Appl Physiol 71:1973–1978

    PubMed  CAS  Google Scholar 

  • Dunbar MB, Brigham RM (2010) Thermoregulatory variation among populations of bats along a latitudinal gradient. J Comp Physiol B 180:885–893

    Article  PubMed  Google Scholar 

  • Else PL, Bennett AF (1987) The thermal dependence of locomotor performance and muscle contractile function in the salamander Ambystoma tigrinum nebulosum. J Exp Biol 128:219–233

    PubMed  CAS  Google Scholar 

  • Fangue NA, Mandic M, Richards JG, Schulte PM (2008) Swimming performance and energetics as a function of temperature in killifish Fundulus heteroclitus. Physiol Biochem Zool 81:389–401

    Article  PubMed  Google Scholar 

  • Fry FEJ, Hart JS (1948) The relation of temperature to oxygen consumption in the goldfish. Biol Bull 94:66–77

    Article  PubMed  CAS  Google Scholar 

  • Gabriel W (2005) How stress selects for reversible phenotypic plasticity. J Evolution Biol 18:873–883

    Article  CAS  Google Scholar 

  • Ganguly AR, Steinhaeuser K, Erickson DJ III, Branstetter M, Parish ES, Singh N, Drake JB, Buja L (2009) Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves. Proc Natl Acad Sci USA 106:15555–15559

    Article  PubMed  CAS  Google Scholar 

  • Gibbs CL, Chapman JB (1974) Effects of stimulus conditions, temperature, and length on energy output of frog and toad sartorius. Am J Physiol 227:964–971

    PubMed  CAS  Google Scholar 

  • Glanville EJ, Seebacher F (2006) Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. J Exp Biol 209:4869–4877

    Article  PubMed  CAS  Google Scholar 

  • Glanville EJ, Seebacher F (2010) Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipes). Comp Biochem Physiol A 155:383–391

    Article  CAS  Google Scholar 

  • Gomes FR, Bevier CC, Navas CA (2002) Environmental and physiological factors influence antipredator behaviour in Scinax hiemalis (Anura: Hylidae). Copeia 2002:994–1005

    Article  Google Scholar 

  • Guderley H (2004) Metabolic responses to low temperature in fish muscle. Biol Rev 79:409–427

    Article  PubMed  Google Scholar 

  • Guderley H, St-Pierre J (2002) Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change. J Exp Biol 205:2237–2249

    PubMed  Google Scholar 

  • Herrel A, James RS, Van Damme R (2007) Fight versus flight: physiological basis for temperature dependent behavioral shifts in lizards. J Exp Biol 210:1762–1767

    Article  PubMed  CAS  Google Scholar 

  • Hertz PE, Huey RB, Nevo E (1982) Fight versus flight: body temperature influences defensive responses of lizards. Anim Behav 30:676–679

    Article  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B 126:136–195

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. Princeton University Press, Princeton

    Google Scholar 

  • Hou TT, Johnson JD, Rall JA (1992) Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. J Physiol 449:399–410

    PubMed  CAS  Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil Trans R Soc B 367:1665–1679

    Article  PubMed  Google Scholar 

  • Husby A, Visser ME, Kruuk LEB (2011) Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol 9:e1000585

    Article  PubMed  CAS  Google Scholar 

  • Imai J-I, Hirayama Y, Kikuchi K, Kakinuma M, Watabe S (1997) cDNA cloning of myosin heavy chain isoforms from carp fast skeletal muscle and their gene expression associated with temperature acclimation. J Exp Biol 200:27–34

    PubMed  CAS  Google Scholar 

  • James RS, Tallis J, Herrel A, Bonneaud C (2012) Warmer is better: thermal sensitivity of both maximal and sustained power output in the iliotibialis muscle isolated from adult Xenopus tropicalis. J Exp Biol 215:552–558

    Article  PubMed  Google Scholar 

  • John-Alder HB, Barnhart MC, Bennett AF (1988) Thermal sensitivity of swimming performance and muscle contraction in northern and southern populations of tree frogs (Hyla crucifer). J Exp Biol 142:357–372

    Google Scholar 

  • Johnson TP, Bennett AF (1995) The thermal acclimation of burst escape performance in fish: an integrated study of molecular and cellular physiology and organismal performance. J Exp Biol 198:2165–2175

    PubMed  Google Scholar 

  • Johnson TP, Johnston IA (1991) Power output of fish muscle fibres performing oscillatory work: effects of acute and seasonal temperature change. J Exp Biol 157:409–423

    Google Scholar 

  • Johnson TP, Johnston IA, Moon TW (1991) Temperature and the energy cost of oscillatory work in teleost fast muscle fibres. Pflugers Arch 419:177–183

    Article  PubMed  CAS  Google Scholar 

  • Johnston IA, Altringham JD (1985) Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from antarctic, temperate and tropical marine fish. Pflugers Arch 405:136–140

    Article  PubMed  CAS  Google Scholar 

  • Johnston IA, Gleeson TT (1984) Thermal dependence of contractile properties of red and white fibres isolated from the iliofibularis muscle of the desert iguana (Dipsosaurus dorsalis). J Exp Biol 113:123–132

    CAS  Google Scholar 

  • Johnston IA, Gleeson TT (1987) Effect of temperature on contractile properties of skinned muscle fibres from three toad species. Am J Physiol 252:R371–R375

    PubMed  CAS  Google Scholar 

  • Johnston IA, Temple GK (2002) Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol 205:2305–2322

    PubMed  Google Scholar 

  • Johnston IA, Davison W, Goldspink G (1975) Adaptation in Mg2+- activated myofibrillar ATPase induced by temperature acclimation. FEBS Lett 50:293–295

    PubMed  CAS  Google Scholar 

  • Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Ann Rev Physiol 55:527–546

    Article  CAS  Google Scholar 

  • Kenny GP, Reardon FD, Zaleski W, Reardon ML, Haman F, Ducharm MB (2003) Muscle temperature transients before, during, and after exercise measured using an intramuscular multisensor probe. J Appl Physiol 94:2350–2357

    PubMed  CAS  Google Scholar 

  • Kolbe JJ, Kearney M, Shine R (2010) Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. Ecol Appl 20:2273–2285

    Article  PubMed  Google Scholar 

  • Lännergren J, Westerblad H (1987) The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. J Physiol 390:285–293

    PubMed  Google Scholar 

  • Le Galliard JF, Clobert J, Ferrière R (2004) Physical performance and Darwinian fitness in lizards. Nature 432(7016):502–505

    Article  PubMed  CAS  Google Scholar 

  • Lieber RL, Friden J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666

    Article  PubMed  CAS  Google Scholar 

  • Lindstedt SL, McGlothlin T, Percy E, Pifer J (1998) Task-specific design of skeletal muscle: balancing muscle structural composition. Comp Biochem Physiol B: Biochem Mol Biol 120:35–40

    Article  CAS  Google Scholar 

  • Marsh RL (1994) Jumping ability of anurans. In: Jones JH (ed) Comparative vertebrate exercise physiology. Academic Press, San Diego, pp 51–111

    Google Scholar 

  • Marsh RL, Bennett AF (1985) Thermal dependence of isotonic contractile properties of skeletal muscle and sprint performance of the lizard Dipsosaurus dorsalis. J Comp Physiol B 155:541–551

    Article  PubMed  CAS  Google Scholar 

  • Mautz WJ, Daniels CB, Bennett AF (1992) Thermal dependence of locomotion and aggression in a xantusiid lizard. Herpetologica 48:271–279

    Google Scholar 

  • Navas CA, Otani L (2007) Physiology, environmental change, and anuran conservation. Phyllomedusa 6:83–103

    Google Scholar 

  • Navas CA, James RS, Wakeling JM, Kemp KM, Johnston IA (1999) An integrative study of the temperature dependence of whole animal and muscle performance during jumping and swimming in the frog Rana temporaria. J Comp Physiol B 169:588–596

    Article  PubMed  CAS  Google Scholar 

  • Niehaus AC, Wilson RS, Seebacher F, Franklin CE (2011) Striped marsh frog (Limnodynastes peronii) tadpoles do not acclimate. J Exp Biol 214:1965–1970

    Article  PubMed  Google Scholar 

  • Niehaus AC, Angilletta MJ Jr, Sears MW, Franklin CE, Wilson RS (2012) Predicting the physiological performance of ectotherms in fluctuating thermal environments. J Exp Biol 215:694–701

    Article  PubMed  Google Scholar 

  • Piazzesi G, Reconditi M, Koubassova N, Decostre V, Linari M, Lucii L, Lombardi V (2003) Temperature dependence of the force-generating process in single fibres from frog skeletal muscle. J Physiol 549:93–106

    Article  PubMed  CAS  Google Scholar 

  • Place N, Yamada T, Zhang S-J, Westerblad H, Bruton JD (2009) High temperature does not alter fatigability in intact mouse skeletal muscle fibres. J Physiol 587:4717–4724

    Article  PubMed  CAS  Google Scholar 

  • Putnam RW, Bennett AF (1983) Histochemical, enzymatic and contractile properties of skeletal muscles of three anuran amphibians. Am J Physiol 244:R558–R567

    PubMed  CAS  Google Scholar 

  • Racinais S, Oksa J (2010) Temperature and neuromuscular function. Scand J Med Sci Sports 20:1–18

    Article  PubMed  Google Scholar 

  • Rall JA, Woledge RC (1990) Influence of temperature on mechanics and energetics of muscle contraction. Am J Physiol 259:R197–R203

    PubMed  CAS  Google Scholar 

  • Ranatunga KW (1982) Temperature-dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle. J Physiol 329:465–483

    PubMed  CAS  Google Scholar 

  • Ranatunga KW (1998) Temperature dependence of mechanical power output in mammalian (rat) skeletal muscle. Exp Physiol 83:371–376

    PubMed  CAS  Google Scholar 

  • Refinetti R (1999) Amplitude of the daily rhythm of body temperature in eleven mammalian species. J Therm Biol 24:477–481

    Article  Google Scholar 

  • Renaud JM, Stevens ED (1984) The extent of short-term and long-term compensation to temperature shown by frog and toad sartorius muscle. J Exp Biol 108:57–75

    Google Scholar 

  • Rezende EL, Chappell MA, Hammond KA (2004) Cold-acclimation in Peromyscus: temporal effects and individual variation in maximum metabolism and ventilatory traits. J Exp Biol 207:295–305

    Article  PubMed  Google Scholar 

  • Rome LC (1983) The effect of long-term exposure to different temperatures on the mechanical performance of frog muscle. Physiol Zool 56:33–40

    Google Scholar 

  • Rome LC, Sosnicki AA (1990) The influence of temperature on mechanics of red muscle in carp. J Physiol 427:151–169

    PubMed  CAS  Google Scholar 

  • Rome LC, Swank D (1992) The influence of temperature on power output of scup red muscle during cyclical length changes. J Exp Biol 171:261–281

    PubMed  CAS  Google Scholar 

  • Rome LC, Swank D, Coughlin DJ (1999) The influence of temperature on power production during swimming II. Mechanics of red muscle fibres in vivo. J Exp Biol 202:333–345

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  PubMed  CAS  Google Scholar 

  • Roots H, Ball G, Talbot-Ponsonby J, King M, McBeath K, Ranatunga KW (2009) Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers. J Appl Physiol 106:378–384

    Article  PubMed  CAS  Google Scholar 

  • Saltin B, Gagge AP, Stolwijk JA (1968) Muscle temperature during submaximal exercise in man. J Appl Physiol 25:679–688

    PubMed  CAS  Google Scholar 

  • Šamajová P, Gvoždík L (2010) Inaccurate or disparate temperature cues? Seasonal acclimation of terrestrial and aquatic locomotor capacity in newts. Funct Ecol 24:1023–1030

    Article  Google Scholar 

  • Schaefer J, Ryan A (2006) Developmental plasticity in the thermal tolerance of zebrafish Danio rerio. J Fish Biol 69:722–734

    Article  Google Scholar 

  • Seebacher F (2005) A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility? J Comp Physiol B 175:453–461

    Article  PubMed  Google Scholar 

  • Seebacher F, Franklin CE (2011) Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. J Exp Biol 214:1437–1444

    Article  PubMed  Google Scholar 

  • Seebacher F, James RS (2008) Plasticity of muscle function in a thermoregulating ectotherm (Crocodylus porosus): biomechanics and metabolism. Am J Physiol 294:R1024–R1032

    CAS  Google Scholar 

  • Seebacher F, Holmes S, Roosen NJ, Nouvian M, Wilson RS, Ward AJW (2012) Capacity for thermal acclimation differs between populations and phylogenetic lineages within a species. Funct Ecol 26:1418–1428

    Article  Google Scholar 

  • Segal SS, Faulkner JA, White TP (1986) Skeletal muscle fatigue in vitro is temperature dependent. J Appl Physiol 61:660–665

    PubMed  CAS  Google Scholar 

  • Sinclair ELE, Thompson MB, Seebacher F (2006) Phenotypic flexibility in the metabolic response of the limpet Cellana tramoserica to thermally different microhabitats. J Exp Mar Biol Ecol 335:131–141

    Article  Google Scholar 

  • Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Sepulveda PV, Rocha CFD, Ibargüengoytía N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW Jr (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Gordon T, Shriver J (1982) Temperature dependence of mammalian muscle contractions and ATPase activities. Biophys J 40:97–107

    Article  PubMed  CAS  Google Scholar 

  • Swank DM, Rome LC (2001) The influence of thermal acclimation on power production during swimming II. Mechanics of scup red muscle under in vivo conditions. J Exp Biol 204:419–430

    PubMed  CAS  Google Scholar 

  • Swoap SJ, Johnson TP, Josephson RK, Bennett AF (1993) Temperature, muscle power output, and limitations on burst locomotor performance of the lizard Dipsosaurus dorsalis. J Exp Biol 174:185–197

    Google Scholar 

  • Sylvestre E-L, Lapointe D, Dutil J-D, Guderley H (2007) Thermal sensitivity of metabolic rates and swimming performance in two latitudinally separated populations of cod, Gadus morhua L. J Comp Physiol B 177:447–460

    Article  PubMed  Google Scholar 

  • Syme DA (2006) Functional properties of skeletal muscle. In: Shadwick RE, Lauder GV (eds) Fish physiology: fish biomechanics, series Randall DJ, Farrell AP (eds) vol 23, Academic Press, Elsevier pp 179–240

  • Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

    Article  PubMed  Google Scholar 

  • Wilson RS (2001) Geographic variation in thermal sensitivity of jumping performance in the frog Limnodynastes peronii. J Exp Biol 204:4227–4236

    PubMed  CAS  Google Scholar 

  • Wilson RS, Franklin CE (1999) Thermal acclimation of locomotor performance in tadpoles of the frog Limnodynastes peronii. J Comp Physiol B 169:445–451

    Article  PubMed  CAS  Google Scholar 

  • Wilson RS, James RS, Johnston IA (2000) Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog, Xenopus laevis. J Comp Physiol B 170:117–124

    Article  PubMed  CAS  Google Scholar 

  • Wilson RS, James RS, Kohlsdorf T, Cox VM (2004) Inter-individual variation of isolated muscle performance and structure in the toad Bufo viridis. J Comp Physiol B 174:453–459

    Article  PubMed  CAS  Google Scholar 

  • Wooden KM, Walsberg GE (2004) Body temperature and locomotor capacity in a heterothermic rodent. J Exp Biol 207:41–46

    Article  PubMed  Google Scholar 

  • Yaicharoen P, Wallman K, Morton A, Bishop D (2012) The effect of warm-up on intermittent sprint performance and selected thermoregulatory parameters. J Sci Med Sport 15:451–456

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks to Professor Ian Hume for inviting me to write this review and for providing editorial comments, and to the anonymous referees whose constructive criticism improved this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob S. James.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, R.S. A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. J Comp Physiol B 183, 723–733 (2013). https://doi.org/10.1007/s00360-013-0748-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0748-1

Keywords

Navigation