Skip to main content
Log in

Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Pinnipeds rely on muscle oxygen stores to help support aerobic diving, therefore muscle maturation may influence the behavioral ecology of young pinnipeds. To investigate the pattern of muscle development, myoglobin concentration ([Mb]) and acid buffering ability (β) was measured in ten muscles from 23 harp and 40 hooded seals of various ages. Adult [Mb] ranged from 28–97 to 35–104 mg g tissue−1 in harp and hooded seals, respectively, with values increasing from the cervical, non-swimming muscles to the main swimming muscles of the lumbar region. Neonatal and weaned pup muscles exhibited lower (~30% adult values) and less variable [Mb] across the body than adults. In contrast, adult β showed little regional variation (60–90 slykes), while high pup values (~75% adult values) indicate significant in utero development. These findings suggest that intra-uterine conditions are sufficiently hypoxic to stimulate prenatal β development, but that [Mb] development requires additional postnatal signal such as exercise, and/or growth factors. However, because of limited development in both β and [Mb] during the nursing period, pups are weaned with muscles with lower aerobic and anaerobic capacities than those of adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

β:

Acid buffering capacity, slykes

βTBA :

Total body acid buffering capacity

βLD :

Acid buffering capacity for the longissimus dorsi

βPEC :

Acid buffering capacity for the pectoralis

LD:

Longissimus dorsi

Mb:

Muscle myoglobin, mg g wet tissue−1

[Mb]TBA :

Total body myoglobin concentration

[Mb]LD :

Myoglobin concentration for the longissimus dorsi

[Mb]PEC :

Myoglobin concentration for the pectoralis

Pec:

Pectoralis

PWF:

Postweaning fast

References

  • Bajzak, CE, Côté SD, Hammill MO, Stenson G (2009) Intersexual differences in the postbreeding behaviour of the Northwest Atlantic hooded seal. Mar Ecol Prog Ser (in press)

  • Baldwin KM, Haddad F (2001) Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90:345–357

    Article  PubMed  CAS  Google Scholar 

  • Bangsbo J, Madsen K, Kiens B, Richter EA (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 495:587–596

    PubMed  CAS  Google Scholar 

  • Bate Smith EC (1938) The buffering of muscle in rigor: protein, phosphate and carnosine. J Physiol 92:336–343

    Google Scholar 

  • Blix AS, Steen JB (1979) Temperature regulation in newborn polar homeotherms. Physiol Rev 59:285–304

    PubMed  CAS  Google Scholar 

  • Bodkin JL, Esslinger GJ, Monson DH (2004) Foraging depths of sea otters and implications to costal marine communities. Mar Mamm Sci 20:305–321

    Article  Google Scholar 

  • Bowen WD, Boness DJ, Oftedal OT (1987) Mass transfer from mother to pup and subsequent mass loss by the weaned pup in the hooded seal, Cystophora cristata. Can J Zool 65:1–8

    Article  Google Scholar 

  • Bowen WD, Boness DJ, Iverson SJ (1999) Diving behaviour of lactating harbour seals and their pups during maternal foraging trips. Can J Zool 77:978–988

    Article  Google Scholar 

  • Brooks GA, Fahey TD, Baldwin KM (2005) Exercise physiology, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Bryden MM (1972) Body size and composition of elephant seals Mirounga leonina: absolute measurements and estimates from bone dimensions. J Zool Lond 167:265–276

    Article  Google Scholar 

  • Burns JM, Costa DP, Frost KJ, Harvey JT (2005) Physiological development in juvenile harbor seals. Phys Bioch Zool 78:1057–1068

    Article  CAS  Google Scholar 

  • Burns JM, Lestyk K, Folkow LP, Hammill MO, Blix AS (2007) Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. J Comp Physiol B 177:687–700

    Article  PubMed  CAS  Google Scholar 

  • Burton RF (1978) Intracellular buffering. Respir Physiol 33:51–58

    Article  PubMed  CAS  Google Scholar 

  • Butler PJ, Jones DR (1997) Physiology of diving of birds and mammals. Physiol Rev 77:837–899

    PubMed  CAS  Google Scholar 

  • Carrier DR (1983) Postnatal ontogeny of the musculo-skeletal system in the black-tailed jack rabbit (Lepus californicus). J Zool 201:27–55

    Article  Google Scholar 

  • Castellini MA, Somero GN (1981) Buffering capacity of vertebrate muscle: correlations with potential for anaerobic function. J Comp Physiol 143:191–198

    CAS  Google Scholar 

  • Clark CA, Burns JM, Schreer JF, Hammill MO (2007) A longitudinal and cross-sectional analysis of total body oxygen store development in nursing harbor seals (Phoca vitulina). J Comp Physiol B 177:217–227

    Article  PubMed  Google Scholar 

  • Close RI (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52:129–197

    PubMed  CAS  Google Scholar 

  • Davis RW, Polasek L, Watson R, Fuson A, Williams TM, Kanatous SB (2004) The diving paradox: new insights into the role of the dive response in air-breathing vertebrates. Comp Biochem Physiol A 138:263–268

    Article  CAS  Google Scholar 

  • Evans BK, Jones DR, Baldwin J, Gabbott GRJ (1994) Diving ability of the platypus. Aust J Zool 42:17–27

    Article  Google Scholar 

  • Fish FE, Ronald SI (1988) Kinematics and estimated thrust production of swimming harp and ringed seals. J Exp Biol 137:157–173

    PubMed  CAS  Google Scholar 

  • Folkow LP, Blix AS (1999) Diving behaviour of hooded seals (Cystophora cristata) in the Greenland and Norwegian Seas. Polar Biol 22:61–74

    Article  Google Scholar 

  • Folkow LP, Nordoy ES, Blix AS (2004) Distribution and diving behavior of harp seals (Pagophilus groenlandica) from the Greenland Sea stock. Polar Biol 27:281–298

    Article  Google Scholar 

  • Garry DJ, Bassel-Dubay R, Richarson JG, Neufer PD, Williams RS (1996) Postnatal development and plasticity of specialized fiber characteristics in the hindlimb. Dev Gen 19:146–156

    Article  CAS  Google Scholar 

  • George JC, Ronald K (1975) Metabolic adaptation in pinniped skeletal muscle. Rapp P -v Reun Cons int Explor Mer 169:432–436

    Google Scholar 

  • Grand TI (1977) Body weight: its relation to tissue composition, segment distribution, and motor function. Am J Phys Anthrop 47:211–240

    Article  PubMed  CAS  Google Scholar 

  • Grand TI, Barboza PS (2001) Anatomy and development of the koala, Phascolarctos cinereus: an evolutionary perspective on the superfamily Vombatoidea. Anat Embryol 203:211–223

    Article  PubMed  CAS  Google Scholar 

  • Greaves DK, Schreer JF, Hammill MO, Burns JM (2005) Diving heart rate development in postnatal harbour seals, Phoca vitulina. Phys Bioch Zool 78:9–17

    Article  Google Scholar 

  • Hochachka PW, Foreman RA (1993) Phocid and cetacean blueprints of muscle metabolism. Can J Zool 71:2089–2098

    Article  CAS  Google Scholar 

  • Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Ann Rev Physiol 38:273–291

    Article  CAS  Google Scholar 

  • Howell AB (1929) Anatomy of the eared and earless seals. Proc U S Natl Mus 73:1–142

    Google Scholar 

  • Jamon M (2006) The early development of motor control in neonate rat. Evol 5:657–666

    Google Scholar 

  • Jorgensen C, Lydersen C, Kovacs KM (2001) Diving development in nursing harbour seal pups. J Exp Biol 204:3993–4004

    PubMed  CAS  Google Scholar 

  • Kanatous SB, DiMichele LV, Cowan DF, Davis RW (1999) High aerobic capacities in skeletal muscles of pinnipeds: adaptations to diving hypoxia. J Appl Physiol 86:1247–1256

    PubMed  CAS  Google Scholar 

  • Kanatous SB, Davis RW, Watson R, Polasek L, Williams TM, Mathieu-Costello O (2002) Aerobic capacities in the skeletal muscles of Weddell seals: key to longer dive durations? J Exp Biol 205:3601–3608

    PubMed  CAS  Google Scholar 

  • Kanatous SB, Hawke TJ, Trumble SJ, Pearson LP, Watson RR, Garry DJ, Williams TM, Davis RW (2008) The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. J Exp Biol 211:2559–2565

    Google Scholar 

  • Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin

    Google Scholar 

  • Kooyman GL, Castellini MA, Davis RW (1981) Physiology of diving in marine mammals. Ann Rev Physiol 43:343–356

    Article  CAS  Google Scholar 

  • Kooyman GL, Cherel Y, Le Maho Y, Croxall JP, Thorson P, Ridoux V, Kooyman CA (1992) Diving behavior and energetics during foraging cycles in king penguins. Ecol Monog 62:143–163

    Article  Google Scholar 

  • Kovacs KM, Lavigne DM (1986) Maternal investment and neonatal growth in phocid seals. J Anim Ecol 55:1035–1051

    Article  Google Scholar 

  • Kristensen M, Albertsen J, Rentsch M, Juel C (2005) Lactate and force production in skeletal muscle. J Physiol 562:521–526

    Article  PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir Physiol 9:277–286

    Article  PubMed  CAS  Google Scholar 

  • Liggins GC, Qvist J, Hochachka PW, Murphy BJ, Creasy RK, Schneider RC, Snider MT, Zapol WM (1980) Fetal cardiovascular and metabolic responses to simulated diving in the Weddell seal. J Appl Physiol 49:424–430

    PubMed  CAS  Google Scholar 

  • Lydersen C, Ryg MS, Hammill MO, O’Brien J (1992) Oxygen stores and aerobic dive limit of ringed seals (Phoca hispida). Can J Zool 70:458–461

    Article  Google Scholar 

  • Lydersen C, Kovacs KM, Hammill MO (1997) Energetics during nursing and early postweaning fasting in hooded seal (Cystophora cristata) pups from the Gulf of St. Lawrence. J Comp Physiol B 167:81–88

    Article  PubMed  CAS  Google Scholar 

  • MacArthur RA, Humphries MM, Fines GA, Campbell KL (2001) Body oxygen stores, aerobic dive limits, and the diving abilities of juvenile and adult muskrats (Ondatra zibethicus). Phys Bioch Zool 74:178–190

    Article  CAS  Google Scholar 

  • Merrick RL, Loughlin TR (1997) Foraging behavior of adult female and young-of-the-year Steller sea lions in Alaskan waters. Can J Zool 75:776–786

    Article  Google Scholar 

  • Muir GD (2000) Early ontogeny of locomotor behavior: a comparison between altricial and precocial animals. Brain Res Bull 53:719–726

    Article  PubMed  CAS  Google Scholar 

  • Nordoy ES, Folkow LP, Potelov V, Prischemikhin V, Blix AS (2008) Seasonal distribution and dive behaviour of harp seals (Pagophilus groenlandicus) of the White Sea-Barents Sea stock. Polar Biol 31:1119–1135

    Article  Google Scholar 

  • Noren SR (2004) Buffering capacity of the locomotor muscle in cetaceans: correlates with postpartum development, dive duration, and swim performance. Mar Mamm Sci 20:808–822

    Article  Google Scholar 

  • Noren SR, Williams TM (2000) Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comp Biochem Physiol A 126:181–191

    Article  CAS  Google Scholar 

  • Noren SR, Williams TM, Pabst DA, McLellan WA, Dearolf JL (2001) The development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J Comp Physiol B 171:127–134

    Article  PubMed  CAS  Google Scholar 

  • Noren SR, Iverson SJ, Boness DJ (2005) Development of the blood and muscle oxygen stores in gray seals (Halichoerus grypus): implications for juvenile diving capacity and the necessity of a terrestrial postweaning fast. Phys Bioch Zool 78:482–490

    Article  Google Scholar 

  • Oftedal OT, Bowen WD, Boness DJ (1996) Lactation performance and nutrient deposition in pups of the harp seal, Phoca groenlandica, on ice floes off southeast labrador. Physiol Zool 69:635–657

    Google Scholar 

  • Ontell M, Dunn RF (1978) Neonatal muscle growth: a quantitative study. Am J Anat 152:539–555

    Article  PubMed  CAS  Google Scholar 

  • Peronnet F, Aguilaniu B (2006) Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: A critical reappraisal. Respir Physiol Neurobiol 150:4–18

    Article  PubMed  Google Scholar 

  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    PubMed  CAS  Google Scholar 

  • Picard B, Lefaucheur L, Berri C, Duclos MJ (2002) Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev 42:415–431

    Article  PubMed  Google Scholar 

  • Ponganis PJ, Costello ML, Starke LN, Mathieu-Costello O, Kooyman GL (1997) Structural and biochemical characteristics of locomotory muscles of emperor penguins, Aptenodytes forsteri. Respir Physiol 109:73–80

    Article  PubMed  CAS  Google Scholar 

  • Ponganis PJ, Starke LN, Horning M, Kooyman GL (1999) Development of diving capacity in emperor penguins. J Exp Biol 202:781–786

    PubMed  CAS  Google Scholar 

  • Ramirez JM, Folkow LP, Blix AS (2007) Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Ann Rev Physiol 69:18.1–18.31

    Google Scholar 

  • Reed JZ, Butler PJ, Fedak MA (1994) The metabolic characteristics of the locomotory muscles of grey seals (Halichoerus grypus), harbour seals (Phoca vitulina), and Antarctic fur seals (Arctocephalus gazella). J Exp Biol 194:46

    Google Scholar 

  • Reynafarje B (1963) Simplified method for the determination of myoglobin. J Lab Clin Med 61:138–145

    CAS  Google Scholar 

  • Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hval Skr 22:1–131

    Google Scholar 

  • Sivertsen E (1941) On the biology of the harp seal Phoca groenlandica Erx. Investigations carried out in the White Sea 1925–1937. Hval Skr 26:1–164

    Google Scholar 

  • Starck JM, Ricklefs RE (1998) Patterns of development: the altricial-precocoal spectrum. In: Starck JM, Ricklefs RE (eds) Avian growth and development: evolution within the altricial precocial spectrum. Oxford University Press, New York, pp 3–30

    Google Scholar 

  • Stewart REA, Lavigne DM (1980) Neonatal growth of northwest Atlantic Harp seals, Pagophilus groenlandicus. J Mammal 61(4):670–680

    Article  PubMed  CAS  Google Scholar 

  • Suarez RK (1998) Oxygen and the upper limits to animal design and performance. J Exp Biol 201:1065–1072

    PubMed  CAS  Google Scholar 

  • Terrados N, Jansson E, Sylven C, Kaijser L (1990) Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol 68:2369–2372

    PubMed  CAS  Google Scholar 

  • Thorson PH, Le Boeuf BJ (1994) Developmental aspects of diving in Northern elephant seal pups. In: Le Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behavior, and physiology. University of California Press, Berkeley, pp 271–289

    Google Scholar 

  • Venters SJ, Thorsteinsdottir S, Duxson MJ (1999) Early development of the myotome in the mouse. Dev Dyn 216:219–232

    Article  PubMed  CAS  Google Scholar 

  • Weise MJ, Costa DP (2007) Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. J Exp Biol 210:278–289

    Article  PubMed  Google Scholar 

  • Williams TM, Davis RW, Fuiman LA, Francis J, Le Boeuf BJ, Horning M, Calambokidis J, Croll DA (2000) Sink or swim: strategies for cost-efficient diving by marine mammals. Science 288:133–136

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206:2011–2020

    Article  PubMed  CAS  Google Scholar 

  • Worthy GAJ, Lavigne DM (1987) Mass loss, metabolic rate, and energy utilization by harp and gray seal pups during the postweaning fast. Physiol Zool 60:352–364

    Google Scholar 

Download references

Acknowledgments

We thank the Captain and crew of R/V Jan Mayen, and Mrs. Monica Jenstad for their assistance in the field in Norway. In Canada, we thank the Canadian Coast Guard helicopter pilots Harrison McRae and Bruce Kendall, the Château Madelinot and Roger Simon for providing laboratory space, and Dr. Lena Measures, Stephan Pillet, and Sam Turgeon for assistance with sample processing and analysis. Animal capture and experimental protocols were conducted under permit from the Royal Norwegian Ministry of Fisheries, the Norwegian National Animal Research Authority (NARA), the University of California Chancellor’s Committee on Animal Research, the Department of Fisheries and Oceans, Canada and the University of Alaska Anchorage Institutional Animal Care and Use Permits. All samples were imported into the United States under Marine Mammal permits 782-1399 and 782-1694-02. This study was financed in part by contributions from Alaska EPSCoR (NSF EPS-0346770), the Institute of Marine Science, University of California Santa Cruz, the Roald Amundsen Center for Arctic Research, University of Tromsø, and the Department of Fisheries and Oceans, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keri C. Lestyk.

Additional information

Communicated by H. V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lestyk, K.C., Folkow, L.P., Blix, A.S. et al. Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity. J Comp Physiol B 179, 985–996 (2009). https://doi.org/10.1007/s00360-009-0378-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0378-9

Keywords

Navigation