Skip to main content

Advertisement

Log in

The effect of geometry on ice shelf ocean cavity ventilation: a laboratory experiment

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A laboratory experiment is constructed to simulate the density-driven circulation under an idealized Antarctic ice shelf and to investigate the flux of dense and freshwater in and out of the ice shelf cavity. Our results confirm that the ice front can act as a dynamic barrier that partially inhibits fluid from entering or exiting the ice shelf cavity, away from two wall-trapped boundary currents. This barrier results in a density jump across the ice front and in the creation of a zonal current which runs parallel to the ice front. However despite the barrier imposed by the ice front, there is still a significant amount of exchange of water in and out of the cavity. This exchange takes place through two dense and fresh gravity plumes which are constrained to flow along the sides of the domain by the Coriolis force. The flux through the gravity plumes and strength of the dynamic barrier are shown to be sensitive to changes in the ice shelf geometry and changes in the buoyancy fluxes which drive the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39(2):159–169

    Article  Google Scholar 

  • Årthun M, Nicholls KW, Boehme L (2013) Wintertime water mass modification near an antarctic ice front. J Phys Oceanogr 43:359–365. doi:10.1175/JPO-D-12-0186.1

    Article  Google Scholar 

  • Assmann K, Hellmer H, Beckmann A (2003) Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf. Antarct Sci 15(1):3–11. doi:10.1017/S0954102003001007

    Article  Google Scholar 

  • Cenedese C, Whitehead JA, Ascarelli TA, Ohiwa M (2004) A dense current flowing down a sloping bottom in a rotating fluid. J Phys Oceanogr 34:188–203

    Article  MathSciNet  Google Scholar 

  • Conway H, Hall BL, Denton GH, Gades AM, Waddington ED (1999) Past and future grounding-line retreat of the West Antarctic ice sheet. Science 286(5438):280–283

    Article  Google Scholar 

  • Cossu R, Wells Whlin MG (2004) Influence of the Coriolis force on the velocity structure of gravity currents in straight submarine channel systems. J Geophys Res 115:C11016. doi:10.1029/2010JC006208

    Article  Google Scholar 

  • Davey FJ (2004) Ross Sea Bathymetry. In: Institute of Geological and Nuclear Sciences Geophysical Map 16, scale 1:2,000,000, Version 1.0., Institute of Geology and Nuclear Sciences, Lower Hutt, New Zealand

  • Determan J, Gerdes R (1994) Melting and freezing beneath ice shelves: implications from a three-dimensional ocean-circulation model. Ann Glaciol 20:413–419

    Article  Google Scholar 

  • Etling D, Gelhardt F, Schrader U, Brennecke F, Kuhn G, Chabert dHieres G, Didelle H (2000) Experiments with density currents on a sloping bottom in a rotating fluid. Dyn Atmos Oceans 31:139–164

    Article  Google Scholar 

  • Foldvik A, Gammelsrød T, Nygaard E, Osterhus S (1983) Current measurements near Ronne Ice Shelf: implications for circulation and melting. J Geophys Res 106:4463–4477

    Article  Google Scholar 

  • Gordon AL, Orsi AH, Muench R, Huber BA, Zambianchi E, Visbeck M (2009) Western Ross Sea continental slope gravity currents. Deep-Sea Res. Part II 56(796–817):20. doi:10.1016/j.dsr2.2008.10.037

    Google Scholar 

  • Greenspan HP, Howard LN (1963) On a time-dependent motion of a rotating fluid. J Fluid Mech 17:385

    Article  MATH  MathSciNet  Google Scholar 

  • Griffiths RW, Hopfinger EJ (1983) Gravity currents moving along a lateral boundary in a rotating frame. J Fluid Mech 134:357–399

    Article  Google Scholar 

  • Griffiths RW (1986) Gravity currents in rotating systems. Ann Rev Fluid Mech 18:59–89

    Article  Google Scholar 

  • Grosfeld K, Gerdes R, Determann J (1997) Thermohaline circulation and interaction between ice shelf cavities and the adjacent open ocean. J Geophys Res 102(C7):15595–15610. doi:10.1029/97JC00891

    Google Scholar 

  • Hattermann T, Nøst AK, Lilly JM, Smedsrud JM (2012) Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophys Res Lett 39(L12605):1–6. doi:10.1029/2012GL051012

    Google Scholar 

  • Hellmer HH, Olbers DJ (1989) A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct Sci 1:325–336

    Article  Google Scholar 

  • Holland DM, Jenkins A (1999) Modeling thermodynamic iceocean interactions at the base of an ice shelf. J Phys Oceanogr 29:1787–1800

    Article  Google Scholar 

  • Holland DM, Jenkins A (2001) Adaptation of an isopycnic coordinate ocean model for the study of circulation beneath ice shelves. Mon Wea Rev 129:1905–1927

    Article  Google Scholar 

  • Holland PR, Feltham DL (2006) The effects of rotation and ice shelf topography on frazil-laden Ice Shelf Water plumes. J Phys Oceanogr 36:2312–2327

    Article  Google Scholar 

  • Holman JP (2002) Heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Houcine I, Vivier H, Plasari E, David R, Villermaux J (1996) Planar laser induced fluorescence technique for measurements of concentration fields in continuous stirred tank reactors. Exp Fluids 22(2):95–102

    Google Scholar 

  • Jenkins A (1991) A one-dimensional model of ice shelf-ocean interaction. J Geophys Res Oceans 96(C11):20671–20677

    Article  Google Scholar 

  • Jenkins A, Dutrieux P, Jacobs S, McPhail S, Perrett J, Webb A, White D (2012) Autonomous underwater vehicle exploration of the ocean cavity beneath an Antarctic ice shelf. Oceanography 25(3):202–203. doi:10.5670/oceanog.2012.95

    Article  Google Scholar 

  • Killworth OD, Paldor N, Stern ME (1984) Wave propagation and growth on a surface front in a two-layer geostrophic current. J Marine Res 42:761–785

    Article  Google Scholar 

  • Komar PD (1969) The channelized flow of turbidity currents with application to Monterey deep-sea fan channel. J Geophys Res 74:4544–4558. doi:10.1029/JC074i018p04544

    Article  Google Scholar 

  • Lane-Serff G, Baines P (1998) Eddy formation by dense flows on slopes in a rotating fluid. J Fluid Mech 363:229–252

    Article  MATH  MathSciNet  Google Scholar 

  • MacAyeal DR (1984) Thermohaline circulation below the Ross ice shelf: a consequence of tidally induced vertical mixing and basal melting. J Geophys Res 89:597–606

    Article  Google Scholar 

  • MacAyeal DR (1985) Evolution of tidally triggered meltwater plumes below ice shelves. In: Jacobs SS (ed) Oceanology of the antarctic continental shelf. American Geophysical Union, Washington

    Google Scholar 

  • Makinson K, Schrder M, Østerhus S (2006) Effect of critical latitude and seasonal stratification on tidal current profiles along Ronne Ice Front, Antarctica. J Geophys Res 111:C03022. doi:10.1029/2005JC003062

    Google Scholar 

  • Makinson K, Schröder M, Østerhus S (2005) Seasonal stratification and tidal current profiles along Ronne Ice Front. Frisp, Report 16

  • Marshall J, Plumb RA (2008) Atmosphere, ocean and climate dynamics: an introductory text, vol 93. Academic Press, pp 123–128

  • Mathiot P, Jourdain NC, Barnier B, Galle B, Molines JM, Le Sommer J, Penduff T (2012) Sensitivity of coastal polynyas and high-salinity shelf water production in the Ross Sea, Antarctica, to the atmospheric forcing. Ocean Dyn 62:701–723. doi:10.1007/s10236-012-0531-y

    Article  Google Scholar 

  • Millero FJ (1978) Freezing point of sea water: Eighth report of the Joint Panel of Oceanographic Tables and Standards. Appendix 6 UNESCO Tech Pap Mar Sci 28:29–31

    Google Scholar 

  • Nicholls KW (1996) Temperature variability beneath Ronne Ice Shelf, Antarctica, from thermistor cables. J Phys Oceanogr 11:1199–1210

    Google Scholar 

  • Nicholls KW, Padman L, Schröder M, Woodgate RA, Jenkins A, Østerhus S (2003) Water mass modification over the continental shelf north of Ronne Ice Shelf, Antarctica. J Geophys Res 108(C8):3260. doi:10.1029/2002JC001713

    Article  Google Scholar 

  • Nicholls KW, Österhus S, Makinson K (2009) Ice-Ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Rev Geophys 47:RG3003. doi:10.1029/2007RG000250

    Article  Google Scholar 

  • Nunez-Riboni I, Fahrbach E (2010) An observation of the banded structure of the Antarctic Coastal Current at the prime meridian. Polar Res 29:322–329

    Article  Google Scholar 

  • Orsi AH, Smethie WM Jr, Bullister JL (2002) On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J Geophys Res 107(C8). doi:10.1029/2001JC000976

  • Stern ME, Whitehead JA, Hua BL (1982) The intrusion of a density current along the coast of a rotating fluid. J Fluid Mech 123:237–266

    Article  Google Scholar 

  • Stern AA, Dinniman MS, Zagorodnov V, Tyler SW, Holland DM (2013) Intrusion of warm surface water beneath the McMurdo Ice Shelf, Antarctica. J Geophys Res Oceans 118:7036–7048. doi:10.1002/2013JC008842

    Google Scholar 

  • Wahlin AK, Darelius E, Cenedese C, Lane-Serff GF (2008) Laboratory observations of enhanced entrainment in dense overflows in the presence of submarine canyons and ridges. Deep-sea Res 1(55):737–750. doi:10.1016/J.DSR.2008.02.007

    Article  Google Scholar 

  • Zatsepin AG, Didkovski VL, Semenov AV (1996) A self-oscillatory mechanism of inducing a vortex sloping bottom in a rotating fluid. Oceanology 38:43–50

    Google Scholar 

Download references

Acknowledgments

A. Stern and D, Holland were supported from NSF grants ANT-1144504 and ANT-0732869, both from the Antarctic Integrated System Science (AISS) program of the USA National Science Foundation (NSF), as well as the Center for Sea Level Change (CSLC) of New York University Abu Dhabi Grant G1204. The technical assistance of Henri Didelle and Samuel Viboud is highly valued. The experimental campaign was supported by the European Community's Sixth Framework Programme through the Integrated Infrastructure Initiative HYDRALAB III, Contract no. 022441 (RII3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Stern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stern, A.A., Holland, D.M., Holland, P.R. et al. The effect of geometry on ice shelf ocean cavity ventilation: a laboratory experiment. Exp Fluids 55, 1719 (2014). https://doi.org/10.1007/s00348-014-1719-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1719-3

Keywords

Navigation