Skip to main content
Log in

Makula-Atrophie bei feuchter altersabhängiger Makuladegeneration

Unausweichliche Folge der anti-VEGF-Therapie ?

Atrophy of the macula in the context of its wet, age-related degeneration

An inescapable consequence of anti-VEGF therapy?

  • Übersichten
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Zu den lokalen Langzeitschäden der anti-VEGF-Therapie ist die Datenlage unübersichtlich. Ziel der vorliegenden Übersicht ist es deshalb, die pathophysiologischen Grundlagen für Entwicklung und Fortschreiten der Makula-Atrophie (MA) und des möglichen Einflusses einer anti-VEGF-Therapie auf den Verlauf plausibel zu machen.

Methoden

Die Übersicht basiert auf einer Literaturrecherche in PubMed mit den Schlüsselwörtern „wet AMD“ und „macular atrophy“ (151 Treffer). Unter den seit Anfang 2013 erschienenen Publikationen (n = 90) wurden diejenigen ausgeschieden, die auf Diagnostik und Verlauf, aber nicht Therapie ausgerichtet waren. Unter dem Begriff MA wird hier die Atrophie des funktionell relevanten Komplexes von Photorezeptoren, retinalem Pigmentepithel (RPE), Bruch-Membran und Choriokapillaris verstanden.

Ergebnisse

Experimentell führt eine primäre, vollständige VEGF-Suppression zu erheblichen Veränderungen in der Choriokapillaris, eine inkomplette VEGF-Suppression hingegen zum schleichenden Untergang von Ganglienzellen und Photorezeptoren. Klinisch sind allerdings oft bereits vor Therapiebeginn degenerative Veränderungen an RPE und Bruch-Membran vorhanden. Folglich ist die MA Folge der fortschreitenden neurodegenerativen Grunderkrankung zu verstehen, die vermutlich durch die anti-VEGF-Therapie beschleunigt wird. Unter Ranibizumab ist ein rascheres Fortschreiten zu erwarten als unter Bevacizumab sowie unter monatlicher Therapie rascher als unter PRN-Therapie (lat. pro renata, dt. nach Bedarf). Trotz der dadurch induzierten MA ist die retinale Funktion unter konsequenter Therapie besser, sodass die Beschleunigung der Progression unter anti-VEGF-Therapie in den ersten 5 Jahren nur bei primär fortgeschrittener MA Bedeutung gewinnt.

Schlussfolgerung

Trotz der Zweifel an der langfristigen Sicherheit der anti-VEGF-Therapie ist aus Sicht des Autors eine konsequente Therapie zur Erhaltung der Sehfunktion verhältnismäßig. Dabei lässt sich der therapieinduzierte Schaden kaum von dem natürlichen Fortschreiten der AMD und der biologischen Situation der Patienten trennen.

Abstract

Background

Current understanding of the mechanisms that underlie the long-term consequences of anti-VEGF therapy in wet, age-related macular degeneration (AMD) is poor. Here, the impact of this treatment on the development of macular atrophy (MA) is discussed based on our current pathophysiological understanding.

Methods

This review is based on a PubMed literature survey using the MeSH terms “wet AMD” and “macular atrophy” (151 hits) and limited to publications since 2013 (n = 90). Publications focussing on diagnostics and clinical course not in the context of therapy were excluded. Macular atrophy is defined herein as atrophy affecting the functionally relevant complex of photoreceptors, retinal pigmented epithelium (RPE), Bruch’s membrane and choriocapillaris.

Results

Experimentally, a primary complete suppression of local VEGF leads to evident changes in the choriocapillaris, whereas its incomplete suppression exacerbates cell death of RPE and photoreceptors. Since pre-existing atrophic changes are already present at diagnosis, the role of anti-VEGF treatment cannot be separated from the spontaneous progression of AMD. The progression of MA appears to be faster under ranibizumab than bevacizumab, and likewise on a monthly rather than as-needed basis. Although MA progresses more rapidly under consequent therapy, visual function remains better. Hence, a functionally relevant progression of atrophy during the first five years of treatment would only be expected in pre-existing advanced MA.

Conclusions

Despite doubts regarding the long-term safety of anti-VEGF therapy, it is the author’s view that this is the only option to stabilise visual function. The impact of therapy-induced damage on the spontaneous progression of AMD and the biological status of the aging individual cannot be unequivocally assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Grassmann F, Fleckenstein M, Chew EY, Strunz T, Schmitz-Valckenberg S, Göbel AP, Klein ML, Ratnapriya R, Swaroop A, Holz FG, Weber BH (2015) Clinical and genetic factors associated with progression of geographic atrophy lesions in age-related macular degeneration. PLoS ONE 10(5):e0126636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wu Z, Luu CD, Ayton LN, Goh JK, Lucci LM, Hubbard WC, Hageman JL, Hageman GS, Guymer RH (2014) Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration. Ophthalmology 121(12):2415–2422

    Article  PubMed  Google Scholar 

  3. Rudnicka AR, Kapetanakis VV, Jarrar Z, Wathern AK, Wormald R, Fletcher AE, Cook DG, Owen CG (2015) Incidence of Late-Stage Age-Related Macular Degeneration in American Whites: Systematic Review and Meta-analysis. Am J Ophthalmol 160:85–93.e3

    Article  PubMed  Google Scholar 

  4. Chew EY, Clemons TE, Agrón E, Sperduto RD, Sangiovanni JP, Davis MD, Ferris FL 3rd, Age-Related Eye Disease Study Research Group (2014) Ten-year follow-up of age-related macular degeneration in the age-related eye disease study: AREDS report no. 36. JAMA Ophthalmol 132(3):272–277

    Article  PubMed  Google Scholar 

  5. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2(2):e106–e116

    Article  PubMed  Google Scholar 

  6. Lookeren Campagne M van, LeCouter J, Yaspan BL, Ye W (2014) Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 232(2):151–164

    Article  PubMed  Google Scholar 

  7. Sengupta S, Nguyen AM, Landingham SW van, Solomon SD, Do DV, Ferrucci L, Friedman DS, Ramulu PY (2015) Evaluation of real-world mobility in age-related macular degeneration. BMC Ophthalmol 15(1):9. doi:10.1186/1471-2415-15-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barteselli G, Gomez ML, Doede AL, Chhablani J, Gutstein W, Bartsch DU, Dustin L, Azen SP, Freeman WR (2014) Visual function assessment in simulated real-life situations in patients with age-related macular degeneration compared to normal subjects. Eye (Lond) 28(10):1231–1238

    Article  CAS  Google Scholar 

  9. Butt T, Dunbar HM, Morris S, Orr S, Rubin GS (2013) Patient and public preferences for health states associated with AMD. Optom Vis Sci 90(8):855–860

    Article  PubMed  Google Scholar 

  10. Rees A, Zekite A, Bunce C, Patel PJ (2014) How many people in England and Wales are registered partially sighted or blind because of age-related macular degeneration? Eye (Lond) 28(7):832–837

    Article  CAS  Google Scholar 

  11. Ardeljan D, Chan CC (2013) Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 37:68–89

    Article  CAS  PubMed  Google Scholar 

  12. Zarbin MA, Casaroli-Marano RP, Rosenfeld PJ (2014) Age-related macular degeneration: clinical findings, histopathology and imaging techniques. Dev Ophthalmol 53:1–32

    Article  PubMed  Google Scholar 

  13. Hanus J, Zhao F, Wang S (2015) Current therapeutic development in atrophic age-related macular degeneration. Br J Ophthalmol 100(1):122–127

    Article  PubMed  PubMed Central  Google Scholar 

  14. Camelo S (2014) Potential sources and roles of adaptive immunity in age-related macular degeneration: shall we rename AMD into Autoimmune macular disease? Autoimmune Dis 2014:532487

    PubMed  PubMed Central  Google Scholar 

  15. Muether PS, Neuhann I, Buhl C, Hermann MM, Kirchhof B, Fauser S (2013) Intraocular growth factors and cytokines in patients with dry and neovascular age-related macular degeneration. Retina (Philadelphia, Pa) 33(9):1809–1814

    Article  CAS  Google Scholar 

  16. Tranos P, Vacalis A, Asteriadis S, Koukoula S, Vachtsevanos A, Perganta G, Georgalas I (2013) Resistance to antivascular endothelial growth factor treatment in age-related macular degeneration. Drug Des Devel Ther 7:485–490

    PubMed  PubMed Central  Google Scholar 

  17. Tolentino M (2011) Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol 56(2):95–113

    Article  PubMed  Google Scholar 

  18. Scott AW, Bressler SB (2013) Long-term follow-up of vascular endothelial growth factor inhibitor therapy for neovascular age-related macular degeneration. Curr Opin Ophthalmol 24(3):190–196

    Article  PubMed  Google Scholar 

  19. Gillies MC, Campain A, Barthelmes D, Simpson JM, Arnold JJ, Guymer RH, Mc Allister IL, Essex RW, Morlet N, Hunyor AP, Fight Retinal Blindness Study Group (2015) Long-term outcomes of treatment of Neovascular age-related macular degeneration: data from an observational study. Ophthalmology 122(9):1837–1845

    Article  PubMed  Google Scholar 

  20. Ying GS, Kim BJ, Maguire MG, Huang J, Daniel E, Jaffe GJ, Grunwald JE, Blinder KJ, Flaxel CJ, Rahhal F, Regillo C, Martin DF, CATT Research Group (2014) Sustained visual acuity loss in the comparison of age-related macular degeneration treatments trials. JAMA Ophthalmol 132(8):915–921

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bhisitkul RB, Mendes TS, Rofagha S, Enanoria W, Boyer DS, Sadda SR, Zhang K (2015) Macular atrophy progression and 7‑year vision outcomes in subjects from the ANCHOR, MARINA, and HORIZON studies: the SEVEN-UP study. Am J Ophthalmol 159:915–924.e2

    Article  PubMed  Google Scholar 

  22. Schütze C, Wedl M, Baumann B, Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2015) Progression of retinal pigment epithelial atrophy in antiangiogenic therapy of neovascular age-related macular degeneration. Am J Ophthalmol 159:1100–1114.e1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kurihara T, Westenskow PD, Bravo S, Aguilar E, Friedlander M (2012) Targeted deletion of Vegfa in adult mice induces vision loss. J Clin Invest 122(11):4213–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grisanti S, Tatar O (2008) The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog Retin Eye Res 27(4):372–390

    Article  CAS  PubMed  Google Scholar 

  25. Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS (2014) Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev 8:CD005139

    PubMed Central  Google Scholar 

  26. Moja L, Lucenteforte E, Kwag KH, Bertele V, Campomori A, Chakravarthy U, D’Amico R, Dickersin K, Kodjikian L, Lindsley K, Loke Y, Maguire M, Martin DF, Mugelli A, Mühlbauer B, Püntmann I, Reeves B, Rogers C, Schmucker C, Subramanian ML, Virgili G (2014) Systemic safety of bevacizumab versus ranibizumab for neovascular age-related macular degeneration. Cochrane Database Syst Rev 9:CD011230

    PubMed Central  Google Scholar 

  27. Quaggin SE (2012) Turning a blind eye to anti-VEGF toxicities. J Clin Invest 122(11):3849–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Young M, Chui L, Fallah N, Or C, Merkur AB, Kirker AW, Albiani DA, Forooghian F (2014) Exacerbation of choroidal and retinal pigment epithelial atrophy after anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration. Retina (Philadelphia, Pa) 34(7):1308–1315

    Article  CAS  Google Scholar 

  29. Grunwald JE, Pistilli M, Ying GS, Maguire MG, Daniel E, Martin DF, Comparison of Age-related Macular Degeneration Treatments Trials Research Group (2015) Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 122(4):809–816

    Article  PubMed  Google Scholar 

  30. Meyer CH, Holz FG (2011) Preclinical aspects of anti-VEGF agents for the treatment of wet AMD: Ranibizumab and Bevacizumab. Eye (Lond) 25(6):661–672

    Article  CAS  Google Scholar 

  31. Kaiser PK, Cruess AF, Bogaert P, Khunti K, Kelly SP (2012) Balancing risk in ophthalmic prescribing: assessing the safety of anti-VEGF therapies and the risks associated with unlicensed medicines. Graefes Arch Clin Exp Ophthalmol 250(11):1563–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shin HJ, Shin KC, Chung H, Kim HC (2014) Change of retinal nerve fiber layer thickness in various retinal diseases treated with multiple intravitreal antivascular endothelial growth factor. Invest Ophthalmol Vis Sci 55(4):2403–2411

    Article  PubMed  Google Scholar 

  33. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, Jong PT de, Klaver CC, Klein BE, Klein R et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39(5):367–374

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi K, Shiraga F, Ishida S, Kamei M, Yanagi Y, Yoshimura N (2015) Diagnostic criteria for atrophic age-related macular degeneration. Nippon Ganka Gakkai Zasshi 119(10):671–677

    PubMed  Google Scholar 

  35. Lim PC, Layton CJ (2015) Prognostic implications of imaging in atrophic macular degeneration and its use in clinical practice and clinical trial design. Clin Experiment Ophthalmol. doi:10.1111/ceo.12671

    Google Scholar 

  36. Schmidt-Erfurth U, Waldstein SM (2015) A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res 50:1–24

    Article  PubMed  CAS  Google Scholar 

  37. McHarg S, Brace N, Bishop PN, Clark SJ (2015) Enrichment of Bruch’s membrane from human donor eyes. J Vis Exp. doi:10.3791/53382

    PubMed  PubMed Central  Google Scholar 

  38. Bhutto IA, Baba T, Merges C, Juriasinghani V, McLeod DS, Lutty GA (2011) C‑reactive protein and complement factor H in aged human eyes and eyes with age-related macular degeneration. Br J Ophthalmol 95(9):1323–1330

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73(9):1765–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med 33(4):295–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Folgar FA, Yuan EL, Sevilla MB, Chiu SJ, Farsiu S, Chew EY, Toth CA, Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group (2015) Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2‑year progression of age-related macular degeneration. Ophthalmology 123:39–50.e1 (pii: S0161-6420(15)01038-6)

    Article  PubMed  Google Scholar 

  42. Nathoo NA, Or C, Young M, Chui L, Fallah N, Kirker AW, Albiani DA, Merkur AB, Forooghian F (2014) Optical coherence tomography-based measurement of drusen load predicts development of advanced age-related macular degeneration. Am J Ophthalmol 158(4):757–761 (e1)

    Article  PubMed  Google Scholar 

  43. Boddu S, Lee MD, Marsiglia M, Marmor M, Freund KB, Smith RT (2014) Risk factors associated with reticular pseudodrusen versus large soft drusen. Am J Ophthalmol 157:985–993.e2

    Article  PubMed  PubMed Central  Google Scholar 

  44. Willoughby AS, Ying GS, Toth CA, Maguire MG, Burns RE, Grunwald JE, Daniel E, Jaffe GJ (2015) Subretinal Hyperreflective material in the comparison of age-related macular degeneration treatments trials. Ophthalmology 122:1846–53.e5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C (2015) Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 52(1):12–27

    Article  CAS  PubMed  Google Scholar 

  46. Kim SY (2015) Retinal phagocytes in age-related macular degeneration. Macrophage (Houst) 2(1):e698

  47. Salminen A, Ojala J, Kaarniranta K (2011) Apoptosis and aging: increased resistance to apoptosis enhances the aging process. Cell Mol Life Sci 68(6):1021–1031

    Article  CAS  PubMed  Google Scholar 

  48. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A (2013) Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25(10):1939–1948

    Article  CAS  PubMed  Google Scholar 

  49. Kaarniranta K, Sinha D, Blasiak J, Kauppinen A, Veréb Z, Salminen A, Boulton ME, Petrovski G (2013) Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9(7):973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A (2013) Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis 2:1–14

    PubMed  PubMed Central  Google Scholar 

  51. Danis RP, Lavine JA, Domalpally A (2015) Geographic atrophy in patients with advanced dry age-related macular degeneration: current challenges and future prospects. Clin Ophthalmol 9:2159–2174

    Article  PubMed  PubMed Central  Google Scholar 

  52. Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S, FAM-Study Group (2007) Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol 143(3):463–472

    Article  PubMed  Google Scholar 

  53. Complications of Age-related Macular Degeneration Prevention Trial (CAPT) Research Group (2008) Risk factors for choroidal neovascularization and geographic atrophy in the complications of age-related macular degeneration prevention trial. Ophthalmology 115:1474–1479, 1479.e1–6

    Article  Google Scholar 

  54. Brader HS, Ying GS, Martin ER, Maguire MG, Complications of Age-Related Macular Degeneration Prevention Trial (CAPT) Research Group (2013) Characteristics of incident geographic atrophy in the complications of age-related macular degeneration prevention trial. Ophthalmology 120(9):1871–1879

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu Z, Luu CD, Ayton LN, Goh JK, Lucci LM, Hubbard WC, Hageman JL, Hageman GS, Guymer RH (2015) Fundus autofluorescence characteristics of nascent geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 56(3):1546–1552

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grob S, Luo J, Hughes G, Lee C, Zhou X, Lee J, Du H, Ferreyra H, Freeman WR, Kozak I, Zhang K (2012) Genetic analysis of simultaneous geographic atrophy and choroidal neovascularization. Eye (Lond) 26(8):1106–1113

    Article  CAS  Google Scholar 

  57. Kuroda Y, Yamashiro K, Tsujikawa A, Ooto S, Tamura H, Oishi A, Nakanishi H, Miyake M, Yoshikawa M, Yoshimura N (2016) Retinal Pigment Epithelial Atrophy in Neovascular Age-Related Macular Degeneration After Ranibizumab Treatment. Am J Ophthalmol 161:94–103.e1

    Article  CAS  PubMed  Google Scholar 

  58. Willoughby AS, Ying GS, Toth CA, Maguire MG, Burns RE, Grunwald JE, Daniel E, Jaffe GJ (2015) Subretinal Hyperreflective material in the comparison of age-related macular degeneration treatments trials. Ophthalmology 122:1846–1853.e5

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schütze C, Wedl M, Baumann B, Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2015) Progression of retinal pigment epithelial atrophy in antiangiogenic therapy of neovascular age-related macular degeneration. Am J Ophthalmol 159:1100–1114.e1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yiu G, Chiu SJ, Petrou PA, Stinnett S, Sarin N, Farsiu S, Chew EY, Wong WT, Toth CA (2015) Relationship of central choroidal thickness with age-related macular degeneration status. Am J Ophthalmol 159(4):617–626

    Article  PubMed  Google Scholar 

  61. Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K (2012) Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 90(4):299–309

    Article  CAS  PubMed  Google Scholar 

  62. Karampelas M, Sim DA, Keane PA, Papastefanou VP, Sadda SR, Tufail A, Dowler J (2013) Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography. Br J Ophthalmol 97(10):1256–1261

    Article  PubMed  Google Scholar 

  63. Blasiak J, Petrovski G, Veréb Z, Facskó A, Kaarniranta K (2014) Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed Res Int 2014:768026. doi:10.1155/2014/768026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF (2015) Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 45:1–29

    Article  CAS  PubMed  Google Scholar 

  65. Ohno-Matsui K, Morita I, Tombran-Tink J, Mrazek D, Onodera M, Uetama T, Hayano M, Murota SI, Mochizuki M (2001) Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol 189(3):323–333

    Article  CAS  PubMed  Google Scholar 

  66. Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 242(1):91–101

    Article  CAS  PubMed  Google Scholar 

  67. Marneros AG, Fan J, Yokoyama Y, Gerber HP, Ferrara N, Crouch RK, Olsen BR (2005) Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol 167(5):1451–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Manousaridis K, Talks J (2012) Macular ischaemia: a contraindication for anti-VEGF treatment in retinal vascular disease? Br J Ophthalmol 96(2):179–184

    Article  PubMed  Google Scholar 

  69. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171(1):53–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ, D’Amore PA (2008) Endogenous VEGF is required for visual function: evidence for a survival role on Müller cells and photoreceptors. PLoS ONE 3(11):e3554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ford KM, Saint-Geniez M, Walshe T, Zahr A, D’Amore PA (2011) Expression and role of VEGF in the adult retinal pigment epithelium. Invest Ophthalmol Vis Sci 52(13):9478–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zucchiatti I, Parodi MB, Pierro L, Cicinelli MV, Gagliardi M, Castellino N, Bandello F (2015) Macular ganglion cell complex and retinal nerve fiber layer comparison in different stages of age-related macular degeneration. Am J Ophthalmol 160:602–607.e1

    Article  PubMed  Google Scholar 

  73. Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K, Kaneko H, Albuquerque RJ, Dridi S, Saito K, Raisler BJ, Budd SJ, Geisen P, Munitz A, Ambati BK, Green MG, Ishibashi T, Wright JD, Humbles AA, Gerard CJ, Ogura Y, Pan Y, Smith JR, Grisanti S, Hartnett ME, Rothenberg ME, Ambati J (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460(7252):225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peden MC, Suñer IJ, Hammer ME, Grizzard WS (2015) Long-term outcomes in eyes receiving fixed-interval dosing of anti-vascular endothelial growth factor agents for wet age-related macular degeneration. Ophthalmology 122(4):803–808

    Article  PubMed  Google Scholar 

  75. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K, SEVEN-UP Study Group (2013) Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 120(11):2292–2299

    Article  PubMed  Google Scholar 

  76. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, Toth C, Redford M, Ferris FL 3rd (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 19(7):1388–1398

    Google Scholar 

  77. Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Culliford LA, Reeves BC, IVAN study investigators (2013) Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2‑year findings of the IVAN randomised controlled trial. Lancet 382(9900):1258–1267

    Article  CAS  PubMed  Google Scholar 

  78. Prenner JL, Halperin LS, Rycroft C, Hogue S, Williams Liu Z, Seibert R (2015) Disease burden in the treatment of age-related macular degeneration: findings from a time-and-motion study. Am J Ophthalmol 160(4):725–731 (e1)

    Article  PubMed  Google Scholar 

  79. Verner-Cole EA, Davis SJ, Lauer AK (2012) Aflibercept for the treatment of neovascular age-related macular degeneration. Drugs Today 48(5):317–329

    Article  CAS  PubMed  Google Scholar 

  80. Bloch SB, Lund-Andersen H, Sander B, Larsen M (2013) Subfoveal fibrosis in eyes with neovascular age-related macular degeneration treated with intravitreal ranibizumab. Am J Ophthalmol 156:116–124.e1

    Article  CAS  PubMed  Google Scholar 

  81. Rosenfeld PJ, Shapiro H, Tuomi L, Webster M, Elledge J, Blodi B, MARINA and ANCHOR Study Groups (2011) Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology 118(3):523–530

    Article  PubMed  Google Scholar 

  82. Rasmussen A, Brandi S, Fuchs J, Hansen LH, Lund-Andersen H, Sander B, Larsen M (2015) Visual outcomes in relation to time to treatment in neovascular age-related macular degeneration. Acta Ophthalmol 93(7):616–620

    Article  PubMed  Google Scholar 

  83. Grunwald JE, Daniel E, Huang J, Ying GS, Maguire MG, Toth CA, Jaffe GJ, Fine SL, Blodi B, Klein ML, Martin AA, Hagstrom SA, Martin DF, CATT Research Group (2014) Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121(1):150–161

    Article  PubMed  Google Scholar 

  84. Cho HJ, Yoo SG, Kim HS, Kim JH, Kim CG, Lee TG, Kim JW (2015) Risk factors for geographic atrophy after intravitreal ranibizumab injections for retinal angiomatous proliferation. Am J Ophthalmol 159:285–92.e1

    Article  CAS  PubMed  Google Scholar 

  85. Mann SS, Rutishauser-Arnold Y, Peto T, Jenkins SA, Leung I, Xing W, Bird AC, Bunce C, Webster AR (2011) The symmetry of phenotype between eyes of patients with early and late bilateral age-related macular degeneration (AMD). Graefes Arch Clin Exp Ophthalmol 249(2):209–214

    Article  CAS  PubMed  Google Scholar 

  86. Channa R, Sophie R, Bagheri S, Shah SM, Wang J, Adeyemo O, Sodhi A, Wenick A, Ying HS, Campochiaro PA (2015) Regression of choroidal neovascularization results in macular atrophy in anti-vascular endothelial growth factor-treated eyes. Am J Ophthalmol 159:9–19.e1–2

    Article  PubMed  Google Scholar 

  87. Pilotto E, Guidolin F, Convento E, Stefanon FG, Parrozzani R, Midena E (2015) Progressing geographic atrophy: choroidal thickness and retinal sensitivity identify two clinical phenotypes. Br J Ophthalmol 99(8):1082–1086

    Article  PubMed  Google Scholar 

  88. Pilotto E, Guidolin F, Convento E, Antonini R, Stefanon FG, Parrozzani R, Midena E (2015) En face optical coherence Tomography to detect and measure geographic atrophy. Invest Ophthalmol Vis Sci 56(13):8120–8124

    Article  PubMed  Google Scholar 

  89. Gibson JM, Gibson SJ (2014) A safety evaluation of ranibizumab in the treatment of age-related macular degeneration. Expert Opin Drug Saf 13(9):1259–1270

    Article  CAS  PubMed  Google Scholar 

  90. Rasmussen A, Bloch SB, Fuchs J, Hansen LH, Larsen M, Lacour M, Lund-Andersen H, Sander B (2013) A 4‑year longitudinal study of 555 patients treated with Ranibizumab for neovascular age-related macular degeneration. Ophthalmology 120(12):2630–2636

    Article  PubMed  Google Scholar 

  91. McKibbin M, Devonport H, Gale R, Gavin M, Lotery A, Mahmood S, Patel PJ, Ross A, Sivaprasad S, Talks J, Walters G (2015) Aflibercept in wet AMD beyond the first year of treatment: recommendations by an expert roundtable panel. Eye (Lond) 29(Suppl 1):S1–S11

    Article  PubMed Central  Google Scholar 

  92. Berg K, Pedersen TR, Sandvik L, Bragadóttir R (2015) Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. Ophthalmology 122(1):146–152

    Article  PubMed  Google Scholar 

  93. Cohen SY, Dubois L, Ayrault S, Dourmad P, Delahaye-Mazza C, Fajnkuchen F, Nghiem-Buffet S, Quentel G, Tadayoni R (2013) Ranibizumab for exudative AMD in a clinical setting: differences between 2007 and 2010. Graefes Arch Clin Exp Ophthalmol 251(11):2499–2503

    Article  CAS  PubMed  Google Scholar 

  94. Arnold JJ, Campain A, Barthelmes D, Simpson JM, Guymer RH, Hunyor AP, Mc Allister IL, Essex RW, Morlet N, Gillies MC, Fight Retinal Blindness Study Group (2015) Two-year outcomes of “treat and extend” intravitreal therapy for neovascular age-related macular degeneration. Ophthalmology 122(6):1212–1219

    Article  PubMed  Google Scholar 

  95. Freund KB, Korobelnik JF, Devenyi R, Framme C, Galic J, Herbert E, Hoerauf H, Lanzetta P, Michels S, Mitchell P, Monés J, Regillo C, Tadayoni R, Talks J, Wolf S (2015) TREAT-AND-EXTEND REGIMENS WITH ANTI-VEGF AGENTS IN RETINAL DISEASES: A literature review and consensus recommendations. Retina 35(8):1489–1506

    Article  CAS  PubMed  Google Scholar 

  96. Tanaka E, Chaikitmongkol V, Bressler SB, Bressler NM (2015) Vision-threatening lesions developing with longer-term follow-up after treatment of neovascular age-related macular degeneration. Ophthalmology 122(1):153–161

    Article  PubMed  Google Scholar 

  97. Sigler EJ, Randolph JC, Calzada JI, Charles S (2014) Smoking and choroidal thickness in patients over 65 with early-atrophic age-related macular degeneration and normals. Eye (Lond) 28(7):838–846

    Article  CAS  Google Scholar 

  98. Rasmussen A, Sander B (2014) Long-term longitudinal study of patients treated with ranibizumab for neovascular age-related macular degeneration. Curr Opin Ophthalmol 25(3):158–163

    Article  PubMed  Google Scholar 

  99. Menke MN, Zinkernagel MS, Ebneter A, Wolf S (2014) Functional and anatomical outcome of eyes with neovascular age-related macular degeneration treated with intravitreal ranibizumab following an exit strategy regimen. Br J Ophthalmol 98(9):1197–1200

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tolentino MJ, Dennrick A, John E, Tolentino MS (2015) Drugs in Phase II clinical trials for the treatment of age-related macular degeneration. Expert Opin Investig Drugs 24(2):183–199

    Article  CAS  PubMed  Google Scholar 

  101. Nuzzi R, Tridico F (2015) Local and systemic complications after intravitreal administration of anti-vascular endothelial growth factor agents in the treatment of different ocular diseases: a five-year retrospective study. Semin Ophthalmol 30(2):129–135

    Article  PubMed  Google Scholar 

  102. Mu Y, Zhao M, Su G (2014) Stem cell-based therapies for age-related macular degeneration: current status and prospects. Int J Clin Exp Med 7(11):3843–3852

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Garweg.

Ethics declarations

Interessenkonflikt

J.G. Garweg erhält Beraterhonorare für verschiedene pharmazeutische Konzerne (Alcon, Allergan, Novartis, Bayer) und nimmt als Principal Investigator an verschiedenen internationalen und nationalen, teils durch die Pharmaindustrie gesponsorten Studien teil. Die hier präsentierten Daten haben nichts mit dieser Tätigkeit zu tun.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Die Ergebnisse wurden als Präsentation auf dem DOG-Kongress 2015 in Berlin präsentiert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garweg, J.G. Makula-Atrophie bei feuchter altersabhängiger Makuladegeneration. Ophthalmologe 113, 1036–1045 (2016). https://doi.org/10.1007/s00347-016-0306-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-016-0306-9

Schlüsselwörter

Keywords

Navigation