Skip to main content
Log in

Performance of ecological restoration in an impaired coral reef in the Wuzhizhou Island, Sanya, China

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Coral restoration is becoming popular to help restoring degraded coral reefs. However, few studies have tried to monitor the long-term recovery of coral reefs, which makes it difficult to assess the performance of the restoration. We monitored the growth of three transplanted Acropora corals and naturally-attached Pocillopora damicornis on artificial reefs (ARs) from October 2014 to September 2018 during which there were several attacks of typhoons. Results show that two staghorn Acropora species had the highest growth rates (11.0–12.1 cm/a), followed by table coral A. divaricate (5.6 cm/a) and P. damicornis (4.8 cm/a). A linear growth pattern was found for the three Acropora species; the pattern gradually slowed in P. damicornis. There was a strong interspecific competition for space among the corals on ARs, and it led to the sharply declined occurrence of slow-growing P. darmicornis colonies in 2017. Coral recovery was successful at the Wuzhizhou Island and quickly increased AR complexity. However, the ARs made of metal frames fail to resist the direct attack from a catastrophic typhoon. Therefore, concrete and environmental-friendly materials should be used in future restoration. This study is the first report on long-term monitoring and assessment of coral reef restoration in China. The results offer future guide of reef restoration for impaired coral reefs in regions easily affected by typhoons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayre D J, Veron J E N, Dufty S L. 1991. The corals Acropora palifera and Acropora cuneata are genetically and ecologically distinct. Coral Reefs, 10(1): 13–18, https://doi.org/10.1007/BF00301901.

    Google Scholar 

  • Baird A H, Pratchett M S, Hoey A S, Herdiana Y, Campbell S J. 2013. Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs, 32(3): 803–812, https://doi.org/10.1007/s00338-013-1025-1.

    Google Scholar 

  • Baird A H, Hughes T P. 2000. Competitive dominance by tabular corals: an experimental analysis of recruitment and survival of understorey assemblages. Journal of Experimental Marine Biology and Ecology, 251(1): 117–132, https://doi.org/10.1016/S0022-0981(00)00209-4.

    Google Scholar 

  • Bongiorni L, Giovanelli D, Rinkevich B, Pusceddu A, Chou L M, Danovaro R. 2011. First step in the restoration of a highly degraded coral reef (Singapore) by in situ coral intensive farming. Aquaculture, 322–323: 191–200, https://doi.org/10.1016/j.aquaculture.2011.09.024.

    Google Scholar 

  • Bongiorni L, Shafir S, Angel D, Rinkevich B. 2003. Survival, growth and gonad development of two hermatypic corals subjected to in situ fish-farm nutrient enrichment. Marine Ecology Progress Series, 253: 137–144, https://doi.org/10.3354/meps253137.

    Google Scholar 

  • Browne N K, Tay J K L, Low J, Larson O, Todd P A. 2015. Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality. Marine Environmental Research, 105: 39–52, https://doi.org/10.1016/j.marenvres.2015.02.002.

    Google Scholar 

  • Bucher D J, Harrison P L. 2002. Growth response of the reef coral Acropora longicyathus to elevated inorganic nutrients: do responses to nutrients vary among coral taxa? In: Proceedings of the 9th International Coral Reef Symposium. State Ministry for the Environment, Bali. p.443-448.

  • Charuchinda M, Hylleberg J. 1984. Skeletal extension of Acropora formosa at a fringing reef in the Andaman Sea. Coral Reefs, 3(4): 215–219, https://doi.org/10.1007/BF00288257.

    Google Scholar 

  • Chen G, Xiong S L, Xie J N, Zou X P, Cui Y C. 1995. A study on the transplantation of reef-building corals in Sanya waters, Hainan Province. Tropic Oceanology, 14(3): 51–57. (in Chinese with English abstract)

    Google Scholar 

  • Cohen I, Dubinsky Z, Erez J. 2016. Light enhanced calcification in hermatypic corals: new insights from light spectral responses. Frontiers in Marine Science, 2: 122, https://doi.org/10.3389/fmars.2015.00122.

    Google Scholar 

  • Damayanti L P A, Ahyadi H, Candri D A, Sabil A. 2011. Growth rate of Acropora formosa and Montipora digitata transplanted on biorock in Gili Trawangan. Journal of Indonesia Coral Reefs, 1(2): 114–119.

    Google Scholar 

  • Darling E S, Alvarez-Filip L, Oliver T A, McClanahan T R, Côté I M. 2012. Evaluating life-history strategies of reef corals from species traits. Ecology Letters, 15(12): 1 378–1 386, https://doi.org/10.1111/j.1461-0248.2012.01861.x.

    Google Scholar 

  • Done T J. 1982. Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs, 1(2): 95–107, https://doi.org/10.1007/BF00301691.

    Google Scholar 

  • Doropoulos C, Roff G, Zupan M, Nestor V, Isechal A L, Mumby P J. 2014. Reef-scale failure of coral settlement following typhoon disturbance and macroalgal bloom in Palau, Western Pacific. Coral Reefs, 33(3): 613–623, https://doi.org/10.1007/s00338-014-1149-y.

    Google Scholar 

  • Duprey N N, Moriaki Y, David M. 2016. Reefs of tomorrow: eutrophication reduces coral biodiversity in an urbanized seascape. Global Change Biology, 22(11): 3 550–3 565. https://doi.org/10.1111/gcb.134322.

    Google Scholar 

  • Edwards A J, Clark S. 1999. Coral Transplantation: a useful management tool or misguided meddling? Marine Pollution Bulletin, 37(8–12): 474–487, https://doi.org/10.1016/S0025-326X(99)00145-9.

    Google Scholar 

  • Edwards A J. 2010. Reef rehabilitation manual. Coral reef targeted research & capacity. St Lucia, Australia.

    Google Scholar 

  • Edwards A J, Gomez E D. 2007. Reef restoration concepts & guidelines: making sensible management choices in the face of uncertainty. Capacity Building for Management Programme. Coral Reef Targeted Research: St Lucia, Australia.

    Google Scholar 

  • Fabricius K E. 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50(2): 125–146, https://doi.org/10.1016/j.marpolbul.2004.11.028.

    Google Scholar 

  • Furnas M J. 1991. The nutrient status of Great Barrier Reef waters. In: Yellowlees D ed. Land Uses, Patterns and Nutrient Loading of the Great Barrier Reef Region. James Cook University, Townsville. p.162–179.

    Google Scholar 

  • Gold Z, Palumbi S R. 2018. Long-term growth rates and effects of bleaching in Acropora hyacinthus. Coral Reefs, 37(1): 267–277, https://doi.org/10.1007/s00338-018-1656-3.

    Google Scholar 

  • Grime J P, Pierce S. 2012. The Evolutionary Strategies that Shape Ecosystems, Wiley-Blackwell, Oxford, UK.

    Google Scholar 

  • Gutner-Hoch E, Fine M. 2011. Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs, 30(3): 643–650, https://doi.org/10.1007/s00338-011-0750-6.

    Google Scholar 

  • Harriott V J. 1998. Growth of the staghorn coral Acropora formosa at Houtman Abrolhos, Western Australia. Marine Biology, 132(2): 319–325, https://doi.org/10.1007/s002270050397.

    Google Scholar 

  • He X Q, Bai Y, Pan D L, Huang N L, Dong X, Chen J S, Chen C T A, Cui Q F. 2013. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sensing of Environment, 133: 225–239, https://doi.org/10.1016/j.rse.2013.01.023.

    Google Scholar 

  • Herbeck L S, Unger D, Krumme U, Liu S M, Jennerjahn T C. 2011. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuarine, Coastal and Shelf Science, 93(4): 375–388, https://doi.org/10.1016/j.ecss.2011.05.004.

    Google Scholar 

  • Highsmith R C, Riggs A C, D’Antonio C M. 1980. Survival of hurricane-generated coral fragments and a disturbance model of reef calcification/growth rates. Oecologia, 46(3): 322–329, https://doi.org/10.1007/BF00346259.

    Google Scholar 

  • Hill J J, Wilkinson C R. 2004. Methods for ecological monitoring of coral reefs: a resource for managers. Australian Institute of Marine Science, Australian.

    Google Scholar 

  • Hongo C, Kawamata H, Goto K. 2012. Catastrophic impact of typhoon waves on coral communities in the Ryukyu Islands under global warming. Journal of Geophysical Research: Biogeosciences, 117(G2): G02029, https://doi.org/10.1029/2011JG001902.

    Google Scholar 

  • Hughes T P, Huang H, Young M A L. 2013. The wicked problem of China’s disappearing coral reefs. Conservation Biology, 27(2): 261–269, https://doi.org/10.1111/j.1523-1739.2012.01957.x.

    Google Scholar 

  • Jones R, Bessell-Browne P, Fisher R, Klonowski W, Slivkoff M. 2016. Assessing the impacts of sediments from dredging on corals. Marine Pollution Bulletin, 102(1): 9–29, https://doi.org/10.1016/j.marpolbul.2015.10.049.

    Google Scholar 

  • Kheawwongjan A, Kim D S. 2012. Present status and prospects of artificial reefs in Thailand. Ocean & Coastal Management, 57: 21–33, https://doi.org/10.1016/j.ocecoaman.2011.11.001.

    Google Scholar 

  • Lang J C, Chornesky E A. 1990. Competition between scleractinian reef corals—a review of mechanisms and effects. In: Dubinsky Z ed. Ecosystems of the World. Elsevier, Amsterdam. p.209–252.

    Google Scholar 

  • Li X B, Huang H, Lian J S, Liu S, Huang L M, Yang J H. 2013. Spatial and temporal variations in sediment accumulation and their impacts on coral communities in the Sanya Coral Reef Reserve, Hainan, China. Deep Sea Research Part II: Topical Studies in Oceanography, 96: 88–96, https://doi.org/10.1016/j.dsr2.2013.04.015.

    Google Scholar 

  • Li Y D, Li X F. 2016. Remote sensing observations and numerical studies of a super typhoon-induced suspended sediment concentration variation in the East China Sea. Ocean Modelling, 104: 187–202, https://doi.org/10.1016/j.ocemod.2016.06.010.

    Google Scholar 

  • Li X B, Li Y C, Xu Q. 2019. Status, ecological restoration and protection strategies of Wuzhizhou Island in Sanya. Ocean Press, Beijing.

    Google Scholar 

  • Liu D F, Pang L, Xie B T. 2009. Typhoon disaster in China: prediction, prevention, and mitigation. Natural Hazards, 49(3): 421–436, https://doi.org/10.1007/s11069-008-9262-2.

    Google Scholar 

  • Lourey M J, Ryan D A J, Miller I R. 2000. Rates of decline and recovery of coral cover on reefs impacted by, recovering from and unaffected by crown-of-thorns starfish Acanthaster planci: a regional perspective of the Great Barrier Reef. Marine Ecology Progress Series, 196: 179–186, https://doi.org/10.3354/meps196179.

    Google Scholar 

  • Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2): 215–233, https://doi.org/10.1016/S0921-8009(99)00009-9.

    Google Scholar 

  • Muko S, Iwasa Y. 2011. Long-term effect of coral transplantation: restoration goals and the choice of species. Journal of Theoretical Biology, 280(1): 127–138, https://doi.org/10.1016/j.jtbi.2011.04.012.

    Google Scholar 

  • Ng C S L, Toh T C, Chou L M. 2016. Coral restoration in Singapore’s sediment-challenged sea. Regional Studies in Marine Science, 8: 422–429, https://doi.org/10.1016/j.rsma.2016.05.005.

    Google Scholar 

  • Ogg J G, Koslow J A. 1978. The impact of typhoon Pamela (1976) on Guam’s coral reefs and beaches. Pacific Science, 32(2): 105–118.

    Google Scholar 

  • Okubo N, Taniguchi H, Motokawa T. 2005. Successful methods for transplanting fragments of Acropora formosa and Acropora hyacinthus. Coral Reefs, 24(2): 333–342, https://doi.org/10.1007/s00338-005-0496-0.

    Google Scholar 

  • Omori M. 2011. Degradation and restoration of coral reefs: experience in Okinawa, Japan. Marine Biology Research, 7(1): 3–12, https://doi.org/10.1080/17451001003642317.

    Google Scholar 

  • Pandolfi J M, Bradbury R H, Sala E, Hughes T P, Bjorndal K A, Cooke R G, McArdle D, McClenachan L, Newman M J H, Paredes G, Warner R R, Jackson J B C. 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science, 301(5635): 955–958, https://doi.org/10.1126/science.1085706.

    Google Scholar 

  • Richmond R H. 1987. Energetic relationships and biogeographical differences among fecundity, growth and reproduction in the reef coral Pocillopora damicornis. Bulletin of Marine Science, 41(2): 594–604.

    Google Scholar 

  • Richmond R H, Golbuu Y, Shelton III A J. 2019. Successful management of coral reef-watershed networks. In: Wolanski E, Day J W, Elliott M, Ramachandran R eds. Coasts and Estuaries. Elsevier, Amsterdam. p.445–459, https://doi.org/10.1016/B978-0-12-814003-1.00026-5.

    Google Scholar 

  • Rinkevich B. 2005. Conservation of coral reefs through active restoration measures: recent approaches and last decade progress. Environmental Science & Technology, 39(12): 4 333–4 342, https://doi.org/10.1021/es0482583.

    Google Scholar 

  • Rogers C S, Suchanek T H, Pecora F A. 1982. Effects of hurricanes David and Frederic (1979) on shallow Acropora palmata reef communities: St. Croix, U.S. Virgin Islands. Bulletin of Marine Science, 32(2): 532–548.

    Google Scholar 

  • Rogers C S. 1990. Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series, 62: 185–202, https://doi.org/10.3354/meps062185.

    Google Scholar 

  • Romano S L. 1990. Long-term effects of interspecific aggression on growth of the reef-building corals Cyphastrea ocellina (Dana) and Pocillopora damicomis (Linnaeus). Journal of Experimental Marine Biology and Ecology, 140(1–2): 135–146, https://doi.org/10.1016/0022-0981(90)90087-S.

    Google Scholar 

  • Saptarini D, Rumengan, Rumengan I F M. 2017. Growth rate of two species branched Acropora in the area of discharged power plant cooling water. Indian Journal of Geo Marine Sciences, 46(7): 1 327–1 332.

    Google Scholar 

  • Shaish L, Levy G, Gomez E, Rinkevich B. 2008. Fixed and suspended coral nurseries in the Philippines: establishing the first step in the “gardening concept” of reef restoration. Journal of Experimental Marine Biology and Ecology, 358(1): 86–97, https://doi.org/10.1016/j.jembe.2008.01.024.

    Google Scholar 

  • Shaish L, Levy G, Katzir G, Rinkevich B. 2010a. Coral reef restoration (Bolinao, Philippines) in the face of frequent natural catastrophes. Restoration Ecology, 18(3): 285–299, https://doi.org/10.1111/j.1526-100X.2009.00647.x.

    Google Scholar 

  • Shaish L, Levy G, Katzir G, Rinkevich B. 2010b. Employing a highly fragmented, weedy coral species in reef restoration. Ecological Engineering, 36(10): 1 424–1 432, https://doi.org/10.1016/j.ecoleng.2010.06.022.

    Google Scholar 

  • Tanner J E, Hughes T P, Connell J H. 1994. Species coexistence, keystone species, and succession: a sensitivity analysis. Ecology, 75(8): 2 204–2 219, https://doi.org/10.2307/1940877.

    Google Scholar 

  • Tanner J E. 1997. Interspecific competition reduces fitness in scleractinian corals. Journal of Experimental Marine Biology and Ecology, 214(1–2): 19–34, https://doi.org/10.1016/S0022-0981(97)00024-5.

    Google Scholar 

  • Tortolero-Langarica J J A, Cupul-Magaña A L, Rodríguez-Troncoso A P. 2014. Restoration of a degraded coral reef using a natural remediation process: a case study from a Central Mexican Pacific National Park. Ocean & Coastal Management, 96: 12–19, https://doi.org/10.1016/j.ocecoaman.2014.04.020.

    Google Scholar 

  • Tortolero-Langarica J J A, Rodríguez-Troncoso A P, Cupul, Magaña A L, Alarcón-Ortega L C, Santiago-Valentín J D. 2019. Accelerated recovery of calcium carbonate production in coral reefs using low-tech ecological restoration. Ecological Engineering, 128: 89–97, https://doi.org/10.1016/j.ecoleng.2019.01.002.

    Google Scholar 

  • Wang A J, Gao S, Chen J, Li D Y. 2009. Sediment dynamic responses of coastal salt marsh to typhoon “KAEMI” in Quanzhou Bay, Fujian Province, China. Chinese Science Bulletin, 54(1): 120–130, https://doi.org/10.1007/s11434-008-0365-7.

    Google Scholar 

  • Wells L, Perez F, Hibbert M, Clerveaux L, Johnson J, Goreau T J. 2010. Effect of severe hurricanes on Biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands. Revista de Biología Tropical, 58(S3): 141–149.

    Google Scholar 

  • White K N, Weinstein D K, Ohara T, Denis V, Montenegro J, Reimer J D. 2017. Shifting communities after typhoon damage on an upper mesophotic reef in Okinawa, Japan. PeerJ, 5: e3573, https://doi.org/10.7717/peerj.3573.

    Google Scholar 

  • Wu S H, Zhang W J. 2012. Current status, crisis and conservation of coral reef ecosystems in China. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(1): 1–11.

    Google Scholar 

  • Wu Y J, Wu S G, Zhai P M. 2007. The impact of tropical cyclones on Hainan Island’s extreme and total precipitation. International Journal of Climatology, 27(8): 1 059–1 064, https://doi.org/10.1002/joc.1464.

    Google Scholar 

  • Wu Z J, Wang D R, Ye C X, Li Y C, Chen M, Chen C H. 2012. Variation tendency and analysis of cause of coral in Sanya. Marine Environmental Science, 31(5): 682–685. (in Chinese with English abstract)

    Google Scholar 

  • Xin L H, Adzis K A A, Hyde J, Cob Z C. 2016. Growth performance of Acropora formosa in natural reefs and coral nurseries for reef restoration. Aquaculture, Aquarium, Conservation & Legislation, 9(5): 1 090–1 100.

    Google Scholar 

  • Yeemin T, Sutthacheep M, Pettongma R. 2006. Coral reef restoration projects in Thailand. Ocean & Coastal Management, 49(9–10): 562–575, https://doi.org/10.1016/j.ocecoaman.2006.06.002.

    Google Scholar 

  • Young C N, Schopmeyer S A, Lirman D. 2012. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bulletin of Marine Science, 88(4): 1 075–1 098, https://doi.org/10.5343/bms.2011.1143.

    Google Scholar 

  • Zainul A. 2019. Management options for restoring artificial coral reefs in Indonesia: strengthening in institutional approach. IOP Conference Series: Earth and Environmental Science, 236: 012049, https://doi.org/10.1088/1755-1315/236/1/012049.

    Google Scholar 

  • Zhang Y Y, Huang H, Huang J Y, You F, Lian J S, Yang J H, Wen C K C. 2016. The effects of four transplantation methods on five coral species at the Sanya Bay. Acta Oceanologica Sinica, 35(10): 88–95, https://doi.org/10.1007/s13131-016-0916-8.

    Google Scholar 

  • Zhao M X, Yu K F, Zhang Q M, Shi Q. 2010. Long-term change in coral cover in Luhuitou fringing reef, Sanya. Oceanologia et Limnologia Sinica, 41(3): 440–447. (in Chinese with English abstract)

    Google Scholar 

  • Zheng X Q, Kuo F W, Pan K, Huang H N, Lin R C. 2019. Different calcification responses of two hermatypic corals to CO2-driven ocean acidification. Environmental Science and Pollution Research, 26(30): 30 596–30 602, https://doi.org/10.1007/s11356-018-1376-9.

    Google Scholar 

  • Zheng X Q, Li Y, Chen S Q, Lin R C. 2018. Effects of calcium ion concentration on calcification rates of six stony corals: a mesocosm study. Aquaculture, 497: 246–252, https://doi.org/10.1016/j.aquaculture.2018.07.041.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinqing Zheng or Yuanchao Li.

Additional information

Data Availability Statement

All data generated and/or analyzed during this study are available from the corresponding author upon request.

Supported by the National Key R&D Program of China (No. 2018YFC1406503), the Scientific Research Foundation of Third Institutes of Oceanography “Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone in Zhangzhou” (No. TIO 2019017), the National Natural Science Foundation of China (No. 41976127), and the China-ASEAN Maritime Cooperation Fund Project “Monitoring and Conservation of coastal ecosystems in the South China Sea” and “China-ASEAN Countries Collaboration on Marine Endangered Species Researches (MESR)”

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Li, Y., Liang, J. et al. Performance of ecological restoration in an impaired coral reef in the Wuzhizhou Island, Sanya, China. J. Ocean. Limnol. 39, 135–147 (2021). https://doi.org/10.1007/s00343-020-9253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-9253-z

Keyword

Navigation