Skip to main content
Log in

Thermal and saline tolerance of Antarctic krill Euphausia superba under controlled in-situ aquarium conditions

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

As a key species of the Southern Ocean ecosystem, the thermal and saline tolerances of Antarctic krill (Euphausia superba Dana) are relatively unknown because of the challenging environment and complicated situations needed for observation have inhibited in-situ experiments in the field. Hence, the thermal and saline tolerance of krill were examined under in-situ aquarium conditions with different controlled scenarios. According to the experiments, the critical lethal times of krill were 24 h, 2 h and 0.5 h under 9°C, 12°C, and 15°C, respectively, and the estimated 50% lethal times were about 17.1 h and 1.7 h under 12°C and 15°C, respectively. Additionally, the critical lethal times (the estimated 50% lethal times) of krill were approximately 14 h and 0.5 h (about 22.9 h and 1.7 h) of salinity under 19.7 and 15.9, respectively. The observed critical and 50% lethal times of krill were 0.5 h and approximately 1.4 h, respectively, salinity under 55.2. The critical and 50% lethal temperatures of krill were 13°C and approximately 14.2°C, respectively. Additionally, the critical and 50% lethal salinity was 19.6 and approximately 17.5 for the lower saline (below normal oceanic salinity [34.4]) environment and 50.3 and approximately 53.2 for the higher saline (above 34.4) environment, respectively. The upper thermal and saline preferences of krill can be considered 6°C and 26.8 to 41.2, respectively. These results can provide potential scenarios for predicting the possible fate of this key species in the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarset A V, Aunaas T. 1987. Physiological adaptations to low temperature and brine exposure in the circumpolar amphipod Gammarus wilkitzkii. Polar Biology, 8(2): 129–133.

    Article  Google Scholar 

  • Aarset A V, Torres J J. 1989. Cold resistance and metabolic responses to salinity variations in the amphipod Eusirus antarcticus and the krill Euphausia superba. Polar Biology, 9(8): 491–497.

    Article  Google Scholar 

  • Atkinson A, Shreeve R S, Hirst A G, Rothery P, Tarling G A, Pond D W, Korb R E, Murphy E J, Watkins J L. 2006. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnology and Oceanography, 51(2): 973–987.

    Article  Google Scholar 

  • Brown M, Kawaguchi S, Candy S, Virtue P. 2010. Temperature effects on the growth and maturation of Antarctic krill (Euphausia superba). Deep Sea Research Part II: Topical Studies in Oceanography, 57(7–8): 672–682.

    Article  Google Scholar 

  • Burrows M, Hoyle G. 1973. The mechanism of rapid running in the ghost crab, Ocypode ceratophthalma. Journal of Experimental Biology, 58: 327–349.

    Google Scholar 

  • Cook A J, Fox A J, Vaughan D G, Ferrigno J G. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721): 541–544.

    Article  Google Scholar 

  • Dahms H U, Dobretsov S, Lee J S. 2011. Effects of UV radiation on marine ectotherms in polar regions. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 153(4): 363–371.

    Google Scholar 

  • Díaz Herrera F, Bückle Ramirez L F. 1993. Thermoregulatory behaviour of Macrobrachium rosenbergii (Crustacea, Palaemonidae). Tropical Ecology, 43: 199–203.

    Google Scholar 

  • Dissanayake A, Ishimatsu A. 2011. Osmoregulatory ability and salinity tolerance in several decapod crustaceans (Palaemonidae & Penaeidae) of the East China Sea. Plankton and Benthos Research, 6(3): 135–140.

    Article  Google Scholar 

  • Durack P J, Wijffels S E, Matear R J. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336(6080): 455–458.

    Article  Google Scholar 

  • Flores H, Atkinson A, Kawaguchi S, Krafft B A, Milinevsky G, Nicol S, Reiss C, Tarling GA, Werner R, Bravo Rebolledo E, Cirelli, V, Cuzin-Roudy J, Fielding S, Groeneveld J J, Haraldsson M, Lombana A, Marschoff E, Meyer B, Pakhomov E A, Rombolá E, Schmidt K, Siegel V, Teschke M, Tonkes H, Toullec J Y, Trathan P N, Tremblay N, Van De Putte A P, Van Franeker J A, Werner T. 2012. Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458: 1–19.

    Article  Google Scholar 

  • Florey E, Hoyle G. 1976. The effects of temperature on a nerve-muscle system of the Hawaiian ghost crab, Ocypode ceratophthalma (Pallas). Journal of Comparative Physiology, 110(1): 51–64.

    Google Scholar 

  • Forward R B Jr, Fyhn H J. 1983. Osmotic regulation of the krill Meganyctiphanes norvegica. Comparative Biochemistry and Physiology Part A: Physiology, 74(2): 301–305.

    Article  Google Scholar 

  • Gradinger R, Schnack-Schiel S B. 1998. Potential effect of ice formation on Antarctic pelagic copepods: salinity induced mortality of Calanus propinquus and Metridia gerlachei in comparison to sympagic acoel turbellarians. Polar Biology, 20(2): 139–142.

    Article  Google Scholar 

  • Hirche H J. 1984. Temperature and metabolism of plankton-I. Respiration of Antarctic Zooplankton at different temperatures with a comparison of antarctic and Nordic krill. Comparative Biochemistry and Physiology Part A: Physiology, 77(2): 361–368.

    Article  Google Scholar 

  • Ikeda T, Dixon P. 1982. Body shrinkage as a possible overwintering mechanism of the Antarctic krill, Euphausia superba Dana. Journal of Experimental Marine Biology and Ecology, 62(2): 143–151.

    Article  Google Scholar 

  • Jarman S, Elliott N, Nicol S, McMinn A, Newman S. 1999. The base composition of the krill genome and its potential susceptibility to damage by UV-B. Antarctic Science, 11(1): 23–26.

    Article  Google Scholar 

  • Jia Z N, Virtue P, Swadling K M, Kawaguchi S. 2014. A photographic documentation of the development of Antarctic krill (Euphausia superba) from egg to early juvenile. Polar Biology, 37(2): 165–179.

    Article  Google Scholar 

  • Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A. 2013. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change, 3(9): 843–847.

    Article  Google Scholar 

  • Kawaguchi S, Kurihara H, King R, Hale L, Berli T, Robinson J P, Ishida A, Wakita M, Virtue P, Nicol S, Ishimatsu A. 2011. Will krill fare well under Southern Ocean acidification? Biology Letters, 7(2): 288–291.

    Article  Google Scholar 

  • Kivivuori L. 1983. Temperature acclimation of walking in the crayfish Astacus astacus L. Comparative Biochemistry and Physiology Part A: Physiology, 75(3): 375–378.

    Article  Google Scholar 

  • Korhonen A I, Lagerspetz K Y H. 1996. Heat shock response and thermal acclimation in Asellus aquaticus. Journal of Thermal Biology, 21(1): 49–56.

    Article  Google Scholar 

  • Lagerspetz K Y H, Vainio L A. 2006. Thermal behaviour of crustaceans. Biological Reviews, 81(2): 237–258.

    Article  Google Scholar 

  • Lagerspetz K Y H. 2003. Thermal acclimation without heat shock, and motor responses to a sudden temperature change in Asellus aquaticus. Journal of Thermal Biology, 28(5): 421–427.

    Article  Google Scholar 

  • Lance J. 1963. The salinity tolerance of some estuarine planktonic copepods. Limnology and Oceanography, 8(4): 440–449.

    Article  Google Scholar 

  • Lehti-Koivunen S M, Kivivuori L A. 1994. Effect of temperature acclimation in the crayfish Astacus astacus L. on the locomotor activity during a cyclic temperature change. Journal of Thermal Biology, 19(5): 299–304.

    Article  Google Scholar 

  • Li E C. 2008. Physiological effects of ambient salinity on Litopenaeus vannamei and nutrient modulation. East China Normal University, Shanghai. 155 pp. (in Chinese with English abstract)

    Google Scholar 

  • Loeb V J, Hofmann E E, Klinck J M, Holm-Hansen O, White W B. 2009. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarctic Science, 21(2): 135–148.

    Article  Google Scholar 

  • Lysack W. 1980. 1979 Cedar Lake Winnipeg Fish Stock Assessment Program. MS Report No. 30. Manitoba Department of Natural Resources, Canada.

    Google Scholar 

  • McKenzie J D, Calow P, Clyde J, Miles A, Dickinson R, Lieb W R, Franks N P. 1992. Effects of temperature on the anaesthetic potency of halothane, enflurane and ethanol in Daphnia magna (Cladocera: Crustacea). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 101(1): 15–19.

    Article  Google Scholar 

  • McLeese D W, Wilder D G. 1958. The activity and catchability of the lobster (Homarus americanus) in relation to temperature. Journal of the Fisheries Research Board of Canada, 15(6): 1345–1354.

    Article  Google Scholar 

  • McWhinnie M A, Marciniak P. 1964. Temperature responses and tissue respiration in Antarctic crustacea with particular references to the krill Euphausia superba. In: Lee M O ed. Biology of the antarctic seas. American Geophysical Union, Washington, DC. p.63–72.

    Google Scholar 

  • Meredith M, King J C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32(19): L19604

    Article  Google Scholar 

  • Meyer B, Fuentes V, Guerra C, Schmidt K, Atkinson A, Spahic S, Cisewski B, Freier U, Olariaga A, Bathmanna U. 2009. Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnology and Oceanography, 54(5): 1595–1614

    Article  Google Scholar 

  • Newman S J, Nicol S, Ritz D, Marchant H. 1999. Susceptibility of Antarctic krill (Euphausia superba Dana) to ultraviolet radiation. Polar Biology, 22(1): 50–55.

    Article  Google Scholar 

  • Newman S J, Ritz D, Nicol S. 2003. Behavioural reactions of Antarctic krill (Euphausia superba Dana) to ultraviolet and photosynthetically active radiation. Journal of Experimental Marine Biology and Ecology, 297(2): 203–217.

    Article  Google Scholar 

  • Nicol S. 2006. Krill, currents, and sea ice: Euphausia superba and its changing environment. BioScience, 56(2): 111–120.

    Article  Google Scholar 

  • Poleck T P, Denys C J. 1982. Effect of temperature on the molting, growth and maturation of the Antarctic krill Euphausia superba (Crustacea: Euphausiacea) under laboratory conditions. Marine Biology, 70(3): 255–265.

    Article  Google Scholar 

  • Quetin, L B, Ross R M, Frazer T K, Haberman K L. 1996. Factors affecting distribution and abundance of zooplankton, with an emphasis on Antarctic krill, Euphausia superba. In: Ross R M, Hofmann E E, Quetin L B eds. Foundations for Ecological Research West of the Antarctic Peninsula. American Geo-physical Union, Washington, DC. p.357–371.

    Chapter  Google Scholar 

  • Rakusa-Suszczewski S, McWhinnie M A. 1976. Resistance to freezing by Antarctic fauna: supercooling and osmoregulation. Comparative Biochemistry and Physiology Part A: Physiology, 54(3): 291–300.

    Article  Google Scholar 

  • Reynolds W W, Casterlin M E. 1979a. Behavioral thermoregulation and activity in Homarus americanus. Comparative Biochemistry and Physiology Part A: Physiology, 64(1): 25–28.

    Article  Google Scholar 

  • Reynolds W W, Casterlin M E. 1979b. Behavioral thermoregulation and the “Final Preferendum” paradigm. Integrative and Comparative Biology, 19(1): 211–224.

    Google Scholar 

  • Rokneddine A, Chentoufi M. 2004. Study of salinity and temperature tolerance limits regarding four crustacean species in a temporary salt water swamp (Lake Zima, Morocco). Animal Biology, 54(3): 237–253.

    Article  Google Scholar 

  • Rye C D, Naveira Garabato A C, Holland P R, Meredith M P, George Nurser A J, Hughes C W, Coward A C, Webb D J. 2014. Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nature Geoscience, 7(10): 732–735.

    Article  Google Scholar 

  • Sander F, Moore E. 1979. Temperature and salinity tolerance limits of the marine gastropod Murex pomum. Comparative Biochemistry and Physiology Part A: Physiology, 64(2): 285–289.

    Article  Google Scholar 

  • Schaafsma F L, Kohlbach D, David C, Lange B A, Graeve M, Flores H, Van Franeker J A. 2017. Spatio-temporal variability in the winter diet of larval and juvenile Antarctic krill, Euphausia superba, in ice-covered waters. Marine Ecology Progress Series, 580: 101–115.

    Article  Google Scholar 

  • Tarling G A, Shreeve R S, Hirst A G, Atkinson A, Pond D W, Murphy E J, Watkins J L. 2006. Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermolt period. Limnology and Oceanography, 51 (2): 959–972.

    Article  Google Scholar 

  • Torres G, Giménez L, Anger K. 2011. Growth, tolerance to low salinity, and osmoregulation in decapod crustacean larvae. Aquatic Biology, 12(3): 249–260.

    Article  Google Scholar 

  • Tremblay N, Abele D. 2016. Response of three krill species to hypoxia and warming: an experimental approach to oxygen minimum zones expansion in coastal ecosystems. Marine Ecology, 37(1): 179–199.

    Article  Google Scholar 

  • Van Ngan P, Gomes V, Carvalho P S M, De A C R Passos M J. 1997. Effect of body size, temperature and starvation on oxygen consumption of Antarctic krill Euphausia superba. Revista Brasileira de Oceanografia, 45(1–2): 1–10.

    Article  Google Scholar 

  • Wernberg T, Smale D A, Thomsen M S. 2012. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Global Change Biology, 18(5): 1491–1498.

    Article  Google Scholar 

  • Whitehouse M J, Meredith M P, Rothery P, Atkinson A, Ward P, Korb R E. 2008. Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: forcings, characteristics and implications for lower trophic levels. Deep Sea Research Part I: Oceanographic Research Papers, 55(10): 1218–1228.

    Article  Google Scholar 

  • Zhu G P, Dai X J, Xu L X, Zhou Y Q. 2010. Reproductive biology of bigeye tuna, Thunnus obesus, (Scombridae) in the eastern and central tropical Pacific Ocean. Environmental Biology of Fishes, 88(3): 253–260.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are especially grateful to the captain and scientific observers on board trawlers Kaili and Longda for their help in collecting the samples used in this study and providing experimental space that made our research possible. We would also like to extend our thanks to Ms. Fokje Schaafsma at the Wageningen University & Research (WUR) and another anonymous reviewer for their valuable comments and suggestions, which improved significantly the present study. We also thank the Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai Ocean University for their support and the utilization of their laboratory facilitates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhu.

Additional information

Supported by the National Key Research and Development Program of China (No. 2018YFC1406801), the National Natural Science Foundation of China (No. 41776185), the National Key Technology R&D Program of China (No. 2013BAD13B03), and the Special Fund for Agro-Scientific Research in the Public Interest of China (No. 201203018)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Liu, Z., Yang, Y. et al. Thermal and saline tolerance of Antarctic krill Euphausia superba under controlled in-situ aquarium conditions. J. Ocean. Limnol. 37, 1080–1089 (2019). https://doi.org/10.1007/s00343-019-8002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8002-7

Keyword

Navigation