Skip to main content
Log in

Does the excitation of a plasmon resonance induce a strong chemical enhancement in SERS? On the relation between chemical interface damping and chemical enhancement in SERS

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this contribution, a fundamental new approach is made to explain high enhancement factors in surface-enhanced Raman spectroscopy (SERS) on the basis of chemical enhancement. Usually, high SERS enhancement factors are explained by electromagnetic enhancements due to the excitation of localized surface plasmon resonances and strong near field dipole–dipole coupling. However, very often the corresponding SERS spectra show clear signatures of a chemical enhancement. I propose that this contradiction is easily solved by taking chemical interface damping of the plasmon resonance into account. Chemical interface damping is caused by an electron transfer from the metallic structure into an adsorbate. However, this mechanism is also the basis for chemical enhancement in SERS, i.e., an electron transfers in the lowest unoccupied molecular orbital of the molecule and back to the metal. Hence, if a molecule causes a strong chemical interface damping, the excitation of plasmons is still the key factor for the SERS enhancement. But the reason for this enhancement might be not solely due to electromagnetic fields rather than by a chemical enhancement due to electron transfers from the metal to the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. The damping via CID takes place on the sub 10 fs timescale. Hence, in 1 s an LSPR decays \(10^{14}\) times.

  2. The damping factor is an essential parameter that characterizes the size dependence of the dephasing time. Thus, for a precise description of the optical properties of metal nanoparticles the damping factor has to be included in the Drude part of the dielectric function [8, 29, 51].

References

  1. S. Nie, S. Emroy, Science 275, 1102 (1997)

    Article  Google Scholar 

  2. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, M. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  3. X.-M. Qian, S. Nie, Chem. Soc. Rev. 37, 912 (2008)

    Article  Google Scholar 

  4. H. Schmidt, K. Sowoidnich, H.-D. Kronfeldt, Appl. Spectrosc. 64, 888 (2010)

    Article  ADS  Google Scholar 

  5. K. Sowoidnich, H. Schmidt, M. Maiwald, B. Sumpf, H.-D. Kronfeldt, Food Bioprocess Technol. 3, 878 (2010)

    Article  Google Scholar 

  6. R. Ossig, A. Kolomijeca, Y.-H. Kwon, F. Hubenthal, H.-D.J. Kronfeldt, Raman Spectrosc. (2013)

  7. K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, M. Feld, J. Phys. Condens. Matter 14, R597 (2002)

    Article  ADS  Google Scholar 

  8. F. Hubenthal, in Noble Metal Nanoparticles: Synthesis and Applications, by eds. D.L. Andrews, G.D. Scholes, G.P. Wiederrecht, Comprehensive Nanoscience and Technology, vol. 1 (Academic Press, Oxford, 2011), pp. 375–435

  9. M. Fleischmann, P. Hendra, A. McQuillan, Chem. Phys. Lett. 2, 163 (1974)

    Article  ADS  Google Scholar 

  10. D. Jeanmaire, R. Van Duyne, J. Electroanal. Chem. 84, 1 (1977)

    Article  Google Scholar 

  11. K. Li, X. Li, M. Stockman, D. Bergman, Phys. Rev. B 71, 115409 (2005)

    Article  ADS  Google Scholar 

  12. K. Li, M. Stockman, D. Bergman, Phys. Rev. Lett. 91, 227402-1–227402-4 (2003)

    ADS  Google Scholar 

  13. J. McMahon, A.-I. Henry, K. Wustholz, M. Natan, R. Freeman, R. Van Duyne, G. Schatz, Anal. Bioanal. Chem. 2009, 394 (1819)

    Google Scholar 

  14. E. Hao, S. Li, C. Bailey, S. Zou, G. Schatz, J. Hupp, J. Phys. Chem. B 108, 1224 (2004)

    Article  Google Scholar 

  15. E. Hao, G. Schatz, J. Chem. Phys. 120, 357 (2004)

    Article  ADS  Google Scholar 

  16. S. Zou, G. Schatz, Chem. Phys. Lett. 403, 62 (2005)

    Article  ADS  Google Scholar 

  17. H. Xu, Appl. Phys. Lett. 85, 5980 (2004)

    Article  ADS  Google Scholar 

  18. A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)

    Article  Google Scholar 

  19. P. Kambhampati, C. Child, M. Foster, A. Campion, J. Chem. Phys. 108, 5013 (1998)

    Article  ADS  Google Scholar 

  20. A. Otto, M. Lust, A. Pucci, G. Meyer, Can. J. Anal. Sci. Spectrosc. 52, 150 (2007)

    Google Scholar 

  21. C. Siemes, A. Bruckbauer, A. Goussev, A. Otto, M. Sinther, A. Pucci, J. Raman Spectrosc. 32, 231 (2001)

    Article  ADS  Google Scholar 

  22. A. Otto, J. Raman Spectrosc. 33, 593 (2002)

    Article  ADS  Google Scholar 

  23. K. Kneipp, H. Kneipp, V. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. Dasari, M. Feld, Phys. Rev. E 57, R6281 (1998)

    Article  ADS  Google Scholar 

  24. J. Zuloaga, E. Prodan, P. Nordlander, Nano Lett. 9, 887 (2009)

    Article  ADS  Google Scholar 

  25. J. Zuloaga, E. Prodan, P. Nordlander, ACS Nano 4, 5269 (2010)

    Article  Google Scholar 

  26. R. Esteban, A. Borisov, P. Nordlander, J. Aizpurua, Nat. Commun. 3, 825 (2012)

    Article  ADS  Google Scholar 

  27. F. Calvayrac, P. Reinhard, E. Suraud, C. Ullrich, Phys. Rep. 337, 493 (2000)

    Article  ADS  Google Scholar 

  28. H.-G. Rubahn, Appl. Surf. Sci. 109/110, 575 (1997)

    Article  ADS  Google Scholar 

  29. A. Pinchuk, U.New Kreibig, J. Phys. 5, 151 (2003)

    Google Scholar 

  30. U. Kreibig, Appl. Phys. B 93, 79 (2008)

    Article  ADS  Google Scholar 

  31. A. Pinchuk, G. von Plessen, U.J. Kreibig, Phys. D Appl. Phys. 37, 3133 (2004)

    Article  ADS  Google Scholar 

  32. T. Ziegler, C. Hendrich, F. Hubenthal, T. Vartanyan, F. Träger, Chem. Phys. Lett. 386, 319 (2004)

    Article  ADS  Google Scholar 

  33. F. Hubenthal, Prog. Surf. Sci. 82, 378 (2007)

    Article  ADS  Google Scholar 

  34. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  35. G. Hartland, Chem. Rev. 111, 3858 (2012)

    Article  Google Scholar 

  36. B. Persson, Surf. Sci. 281, 153 (1993)

    Article  ADS  Google Scholar 

  37. D. Dalacu, M. Martinu, J. Opt. Soc. Am. B 18, 85 (2001)

    Article  ADS  Google Scholar 

  38. U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985)

    Article  ADS  Google Scholar 

  39. A. Kawabata, R. Kubo, J. Phys. Soc. Jpn. 21, 1765 (1966)

    Article  ADS  Google Scholar 

  40. C. Yannouleas, R. Broglia, Ann. Phys. 217, 105 (1992)

    Article  ADS  Google Scholar 

  41. F. Hubenthal, Plasmonics. doi:10.1007/s11468-013-9536-8

  42. E. Almeida, A. Moreira, A. Brito-Silva, A. Galembeck, C. de Melo, L. de S. Menezes, C. de Araújo, Appl. Phys. B 108, 9 (2012)

    Article  ADS  Google Scholar 

  43. T. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, J. Schuck, A. Alivisatos, S. Leone, ACS Nano 6, 5702 (2012)

    Article  Google Scholar 

  44. C. Negre, C. Sánchez, Chem. Phys. Lett. 494, 255 (2010)

    Article  ADS  Google Scholar 

  45. C. Ullrich, P.-G. Reinhard, E. Suraud, Phys. Rev. A 1998, 57 (1938)

    Google Scholar 

  46. S. Berciaud, L. Cognet, P. Tamarat, B. Lounis, Nano Lett. 5, 515 (2005)

    Article  ADS  Google Scholar 

  47. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Phys. Rev. B 48, 18178 (1993)

    Article  ADS  Google Scholar 

  48. B. Persson, Chem. Phys. Lett. 82, 561 (1981)

    Article  ADS  Google Scholar 

  49. A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, J. Phys. Condens. Matter 4, 1143 (1992)

    Article  ADS  Google Scholar 

  50. A. Otto, in Light Scattering in Solids IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects, eds. by M. Cardona, G. Guntherodt (Springer, Berlin, Heidelberg, 1984)

  51. F. Hubenthal, C. Hendrich, F. Träger, Appl. Phys. B 100, 225 (2010)

    Article  ADS  Google Scholar 

  52. F. Hubenthal, F. Träger, Proc. SPIE 7922, 79220D (2011)

    Article  ADS  Google Scholar 

  53. C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, F. Träger, Appl. Phys. B 76, 869 (2003)

    Article  ADS  Google Scholar 

  54. U. Kreibig, M. Gartz, A. Hilger, Ber. Bunsenges. Phys. Chem. 101, 1593 (1997)

    Article  Google Scholar 

  55. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. Hartland, Phys. Chem. Chem. Phys. 8, 3540 (2006)

    Article  Google Scholar 

  56. J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, M. Pellarin, J. Phys. Chem. Lett. 1, 2922 (2010)

    Article  Google Scholar 

  57. T. Vartanyan, J. Bosbach, F. Stietz, F. Träger, Appl. Phys. B 73, 391 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Fruitful discussions with PD Dr. Heinz-Detlef Kronfeldt from the TU Berlin and Prof. Dr. Martin Aeschlimann from the TU Kaiserslautern are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hubenthal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubenthal, F. Does the excitation of a plasmon resonance induce a strong chemical enhancement in SERS? On the relation between chemical interface damping and chemical enhancement in SERS. Appl. Phys. B 117, 1–5 (2014). https://doi.org/10.1007/s00340-014-5907-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5907-x

Keywords

Navigation