Skip to main content
Log in

Electronic, bonding and elastic properties of the ordered \({\hbox {SrTi}}_{1-x} {\hbox {Zr}}_{x} \hbox {O}_{3}\) alloys: a first principles study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By means of first-principles calculations based on the density functional theory (DFT), we have investigated the structural, elastic, electronic, and bonding properties of three \(\hbox {SrTi}_{1-x} \hbox {Zr}_{x} \hbox {O}_{3}\) alloys. The study shows that the substitution of Ti ion by the Zr one can also be undertaken by a tetragonal structure. However, due to the similar ionic radii between substitute cation, the choice of this super-cell leads to a weak change in both structural and dynamical properties and behave similarly even under different applied strains. Electronic as well as bonding properties are more affected by the substitution due to the rearrangement of the atomic orbitals. The calculations of band gaps depict a possible use of the investigated alloys in many UV device applications. Additionally, we will show that deep insight of bonding properties depicts some difference in ionicity degree between alloys. This trend is due essentially to the change in electron valence resulted in a weak variation of energetic orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Ohtomo, D.A. Muller, J.L. Grazul, H.Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378 (2002)

    ADS  Google Scholar 

  2. S. Okamoto, A.J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630 (2004)

    ADS  Google Scholar 

  3. A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the \(\text{ LaAlO}_{3}\)/\(\text{ SrTiO}_{3}\) heterointerface. Nature 427, 423 (2004)

    ADS  Google Scholar 

  4. L. Li, C. Richter, J. Mannhart, R.C. Ashoori, Coexistence of magnetic order and two-dimensional superconductivity at \(\text{ LaAlO}_{3}\)/\(\text{ SrTiO}_{3}\) interfaces. Nat. Phys. 7, 762 (2011)

    Google Scholar 

  5. J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang, K.A. Moler, Direct imaging of the coexistence of ferromagnetism and superconductivity at the \(\text{ LaAlO}_{3}\)/\(\text{ SrTiO}_{3}\) interface. Nat. Phys. 7, 767 (2011)

    Google Scholar 

  6. C.A. Jackson, S. Stemmer, Interface-induced magnetism in perovskite quantum wells. Phys. Rev. B 88, 180403 (2013)

    ADS  Google Scholar 

  7. S. Stemmer, A.J. Millis, MRS Bull. 38, 1032 (2013), ISSN 1938-1425, http://journals.cambridge.org/article_S0883769413002650

  8. A.P. Kajdos, D.G. Ouellette, T.A. Cain, S. Stemmer, Two-dimensional electron gas in a modulation-doped \(\text{ SrTiO}_{3}\)/Sr(Ti, Zr)\(\text{ O}_{3}\) heterostructure. Appl. Phys. Lett. 103, 082120 (2013)

    ADS  Google Scholar 

  9. L. Bjaalie, B. Himmetoglu, L. Weston, A. Janotti, C.G. Van de Walle, Oxide interfaces for novel electronic applications. New J. Phys. 16, 025005 (2014)

    ADS  Google Scholar 

  10. R. Schafranek, J.D. Baniecki, M. Ishii, Y. Kotaka, K. Yamanka, K. Kurihara, Band offsets at the epitaxial \(\text{ SrTiO}_{3}\)/\(\text{ SrZrO}_{3}\) (001) heterojunction. J. Phys. D Appl. Phys. 45, 055303 (2012)

    ADS  Google Scholar 

  11. P. Delugas, A. Filippetti, A. Gadaleta, I. Pallecchi, D. Marre, V. Fiorentini, Large band offset as driving force of two-dimensional electron confinement: The case of \(\text{ SrTiO}_{3}\)/\(\text{ SrZrO}_{3}\) interface. Phys. Rev. B 88, 115304 (2013)

    ADS  Google Scholar 

  12. L. Weston, A. Janotti, X.Y. Cui, B. Himmetoglu, C. Stampfl, C.G. Van de Walle, Structural and electronic properties of \(\text{ SrZrO}_{3}\) and Sr(Ti, Zr)\(\text{ O}_{3}\) alloys. Phys. Rev. B 92, 085201 (2015)

    ADS  Google Scholar 

  13. M.M. Rashad, A.O. Turky, A.T. Kandil, Optical and electrical properties of \(\text{ Ba}_{1-x} \text{ Sr}_{x} \text{ TiO}_{3}\) nanopowders at different \(\text{ Sr}^{2+}\) ion content. J. Mater. Sci. Mater. Electron. 24(9), 3284–3291 (2013)

    Google Scholar 

  14. S. Parida, S.K. Rout, N. Gupta, V.R. Gupta, Solubility limits and microwave dielectric properties of Ca(\(\text{ Zr}_{x} \text{ Ti}_{1-x}\))\(\text{ O}_{3}\) solid solution. J. Alloys Compd. 546, 16–23 (2013)

    Google Scholar 

  15. D. Marrero-Lopez, R. Romero, F. Martin, J.R. Ramos-Barrado, Effect of the deposition temperature on the electrochemical properties of \(\text{ La}_{0.6} \text{ Sr}_{0.4} \text{ Co}_{0.8} \text{ Fe}_{0.2} \text{ O}_{3}\)-delta cathode prepared by conventional spray pyrolysis. J. Power Sour. 255, 308–317 (2014)

    ADS  Google Scholar 

  16. H.M. Christen, L.A. Knauss, K.S. Harshavardhan, Field-dependent dielectric permittivity of paraelectric superlattice structures. Mater. Sci. Eng. B 56(2), 200–203 (1998)

    Google Scholar 

  17. T.K.-Y. Wong, B.J. Kennedy, C.J. Howard, B.A. Hunter, T. Vogt, Crystal structures and phase transitions in the \(\text{ SrTiO}_{3-S} \text{ rZrO}_{3}\) solid solution. J. Solid State Chem. 156, 255–263 (2001)

    ADS  Google Scholar 

  18. Y. Yang, S. Luo, F. Dong, Y. Ding, X. Li, Synthesis of high-phase purity \(\text{ SrTi}_{1-x} \text{ Zr}_{x} \text{ O}_{3}\) ceramics by sol-spray pyrolysis method. Mater. Manuf. Process. Mater. Manuf. Process. 30, 585–590 (2015)

    Google Scholar 

  19. P.H. Liang, L. Teng, Y.S. Liang, L.Y. Ming, Advanced Materials Research vol. 846-847 (2014) pp. 1919–1922 (Online: 2013)

  20. R.E.A. McKnight, B.J. Kennedy, Q. Zhou, M.A. Carpenter, Elastic anomalies associated with transformation sequences in perovskites: II. The strontium zirconate–titanate Sr(Zr,Ti)\(\text{ O}_{3}\) solid solution series. J. Phys. Condens. Matter 21, 015902 (2009)

    ADS  Google Scholar 

  21. Z. Zhang, J. Koppensteiner, W. Schranz, M.A. Carpenter, Anelastic loss behaviour of mobile microstructures in \(\text{ SrZr}_{1-x} \text{ Ti}_{x} \text{ O}_{3}\) perovskites. J. Phys. Condens. Matter 22, 295401 (2010)

    Google Scholar 

  22. S. Parida, S.K. Rout, V. Subramanian, P.K. Barhai, N. Gupta, V.R. Gupta, Structural, microwave dielectric properties and dielectric resonator antenna studies of Sr(\(\text{ Zr}_{x} \text{ Ti}_{1-x}\))\(\text{ O}_{3}\) ceramics. J. Alloys Compd. 528, 126–134 (2012)

    Google Scholar 

  23. G. Celik, S. Cabuk, First-principles study of electronic structure and optical properties of Sr(Ti, Zr)\(\text{ O}_{3}\). Cent. Eur. J. Phys. 11(3), 387–393 (2013)

    Google Scholar 

  24. C. Chen, Y. Wei, D. Chen, X. Jiao, \(\text{ SrTi}_{1-x} \text{ Zr}_{x} \text{ O}_{3}\) uniform particles: low-temperature synthesis, characterization and sintered properties. J. Mater. Process. Technol. 205, 432–438 (2008)

    Google Scholar 

  25. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Technological University, Vienna, Austria, 2001)

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made Simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  27. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  28. A.D. Becke, K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397 (1990)

    ADS  Google Scholar 

  29. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    ADS  MathSciNet  MATH  Google Scholar 

  30. A. Benmakhlouf, A. Bentabet, First principles study of structural and elastic properties of \(\text{ BaWO}_{4}\) Scheelite phase structure under pressure. Int. J. Math. Stat. Sci. 9, 6 (2015)

    Google Scholar 

  31. T. Ouahrani, A. Otero-de-la-Roza, A.H. Reshak, R. Khenata, H.I. Faraoun, B. Amrani, M. Mebrouki, Luaña, Elastic properties and bonding of the \(\text{ AgGaSe}_{2}\) chalcopyrite. Phys. B 405, 3658–3664 (2010)

    ADS  Google Scholar 

  32. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Philos. Mag. J. Sci. 45, 823–843 (1954)

    Google Scholar 

  33. S. Belarouci, T. Ouahrani, N. Benabdallah, Á. Morales-García, R. Franco, Quantum-mechanical simulations of pressure effects on \(\text{ MgIn}_{2} \text{ S}_{4}\) polymorphs. Phase Trans. 91, 759–771 (2018)

    Google Scholar 

  34. T. Ouahrani, Y.O. Ciftci, M. Mebrouki, Dynamical and anisotropic behavior of the \(\text{ MSiP}_{2}\) (M= Be, Mg, Cd, Zn and Hg) compounds. J. Alloys Compd. 610, 372–381 (2014)

    Google Scholar 

  35. M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004)

    ADS  MATH  Google Scholar 

  36. J.R. Waldram, The Theory of Thermodynamics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  37. A. Otero-de-la Roza, D. Abbasi-Pérez, V. Luaña, Critic2: a program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun. 182, 2232–2248 (2011)

    ADS  MATH  Google Scholar 

  38. R.M. Hazen, L.W. Finger, Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure, 1st edn. (Wiley, New York, 1982)

    Google Scholar 

  39. R.F.W. Bader, Atoms in Moleculess, A Quantum Theory (Oxford University Press, Oxford, 1990)

    Google Scholar 

  40. A. Otero-de-la-Roza, E.R. Johnson, V. Luaña, Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 185, 1007–1018 (2014)

    ADS  Google Scholar 

  41. P. Mori-Sánchez, A. Martín Pendás, V. Luaña, A classification of covalent, ionic, and metallic solids based on the electron density. J. Am. Chem. Soc. 124, 14721 (2002)

    Google Scholar 

  42. E. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. Cohen, W. Yang, Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010)

    Google Scholar 

  43. C. Ougher, T. Ouahrani, A.K. Ferouani, Untangling electronic, elastic and bonding properties of the \(\text{ ThGeO}_{4}\) host material from first principles calculation. Eur. Phys. J. B 90, 146 (2017)

    ADS  Google Scholar 

  44. J. Contreras-García, M. Calatayud, J.P. Piquemal, J. Recio, Ionic interactions: comparative topological approach. Comput. Theor. Chem. 998, 193 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedjani, M., Driss-Khodja, M., Boudali, A. et al. Electronic, bonding and elastic properties of the ordered \({\hbox {SrTi}}_{1-x} {\hbox {Zr}}_{x} \hbox {O}_{3}\) alloys: a first principles study. Appl. Phys. A 126, 813 (2020). https://doi.org/10.1007/s00339-020-03999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03999-0

Keywords

Navigation