Skip to main content
Log in

Fabrication of resistively-coupled single-electron device using an array of gold nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrated one type of single-electron device that exhibited electrical characteristics similar to those of resistively-coupled SE transistor (R-SET) at 77 K and room temperature (287 K). Three Au electrodes on an oxidized Si chip served as drain, source, and gate electrodes were formed using electron-beam lithography and evaporation techniques. A narrow (70-nm-wide) gate electrode was patterned using thermal evaporation, whereas wide (800-nm-wide) drain and source electrodes were made using shadow evaporation. Subsequently, aqueous solution of citric acid and 15-nm-diameter gold nanoparticles (Au NPs) and toluene solution of 3-nm-diameter Au NPs chemisorbed via decanethiol were dropped on the chip to make the connections between the electrodes. Current–voltage characteristics between the drain and source electrodes exhibited Coulomb blockade (CB) at both 77 and 287 K. Dependence of the CB region on the gate voltage was similar to that of an R-SET. Simulation results of the model based on the scanning electron microscopy image of the device could reproduce the characteristics like the R-SET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. A. K. Durrani, Single-Electron Devices and Circuits in Silicon, Chap. 1 (Imperial College Press, London, 2010)

  2. K.K. Likharev, Proc. IEEE, 606 (1999). doi:10.1109/5.752518

  3. S.  Mahapatra, V. Pott, S. Ecoffey, A. Schmid, C. Wasshuber, J.W. Tringe, Y. Leblebici, M. Declercq, K. Banerjee, A. M. Ionescu, Proc. IEDM 703 (2003)

  4. A.M. Ionescu, S. Mahapatra, V. Pott, IEEE Electron Device Lett. 25, 411 (2004)

    Article  ADS  Google Scholar 

  5. N.Z. Haron, S. Hamdioui, Proc. IDT (2008). doi:10.1109/IDT.2008.4802475

    Google Scholar 

  6. K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Hashimoto, T. Kobayashi, T. Kure, K. Seki, Proc. IEEE 633 (1999)

  7. A.M. Ionescu, M.J. Declercq, S. Mahapatra, K. Banerjee, J. Gautier, Proc. DAC 88 (2002). doi:10.1109/DAC.2002.1012600

  8. T. Skotnicki, J.A. Hutchby, T.-J. King, H.-S.P. Wong, F. Boeuf, IEEE Circuits Device Mag. 21, 16 (2005)

    Article  Google Scholar 

  9. S. Mahapatra, A. M. Ionescu, K. Banerjee, M.J. Declercq, Proc. IEDM 323 (2002). doi:10.1109/IEDM.2002.1175844

  10. S. Mahapatra, V. Vaish, C. Wasshuber, K. Banerjee, A.M. Ionescu, I.E.E.E. Trans. Electron Devices 51, 1772 (2004)

  11. N.K. Naware, P. Wania, IJETT 2, 273 (2015)

    Google Scholar 

  12. H. Ahmed, J. Vac. Sci. Technol. B 15, 2101 (1997)

    Article  Google Scholar 

  13. Z.A.K. Durrani, A.C. Irvine, H. Ahmed, I.E.E.E. Trans. Electron Devices 47, 2334 (2000)

  14. K. Uchida, J. Koga, R. Ohba, A. Toriumi, I.E.E.E. Trans. Electron Devices 50, 1623 (2003)

  15. H. Inokawa, A. Fujiwara, Y. Takahashi, Proc. IEDM 7.2.1 (2001). doi: 10.1109/IEDM.2001.979453

  16. V.I. Conrad, A.D. Greentree, L.C.L. Hollenberg, Appl. Phys. Lett. 90, 043109 (2007)

    Article  ADS  Google Scholar 

  17. K.K. Likharev, IEEE Trans. Magn. MAG-23, 1142 (1987)

  18. F. Wakaya, K. Kitamura, S. Iwabuchi, K. Gamo, Jpn. J. Appl. Phys. 38, 2470 (1999)

    Article  ADS  Google Scholar 

  19. K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B.J. Vartanian, J.S. Harris, Appl. Phys. Lett. 68, 34 (1996)

    Article  ADS  Google Scholar 

  20. Y. Nakamura, C. Chen, J.-S. Tsai, Jpn. J. Appl. Phys. 35, L1465 (1996)

    Article  Google Scholar 

  21. S. Altmeyer, A. Hamidi, B. Spangenberg, H. Kurz, J. Appl. Phys. 81, 8118 (1997)

    Article  ADS  Google Scholar 

  22. D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P.L. McEuen, Nature 389, 699 (1997)

    Article  ADS  Google Scholar 

  23. J.-I. Shirakashi, K. Matsumoto, N. Miura, M. Konagai, Appl. Phys. Lett. 72, 1893 (1998)

    Article  ADS  Google Scholar 

  24. HWCh. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 293, 76 (2001)

    Article  ADS  Google Scholar 

  25. J.-H. Lee, J. Cheon, S.B. Lee, Y.-W. Chang, S.-I. Kim, K.-H. Yoo, J. Appl. Phys. 98, 084315 (2005)

    Article  ADS  Google Scholar 

  26. Y. Azuma, Y. Yasutake, K. Kono, M. Kanehara, T. Teranishi, Y. Majima, Jpn. J. Appl. Phys. 49, 090206 (2010)

    Article  ADS  Google Scholar 

  27. K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, Y. Majima, ACS Nano 6, 2798 (2012)

    Article  Google Scholar 

  28. A.N. Korotkov, Appl. Phys. Lett. 72, 3226 (1998)

    Article  ADS  Google Scholar 

  29. N. Yoshikawa, Y. Jinguu, H. Ishibashi, M. Sugahara, Jpn. J. Appl. Phys. 35, 1140 (1996)

    Article  ADS  Google Scholar 

  30. P. Delsing, T. Claeson, G.S. Kazacha, L.S. Kuzmin, K.K. Likharev, IEEE. Trans. Magn. 27, 2581 (1991)

    Article  ADS  Google Scholar 

  31. YuA Pashkin, Y. Nakamura, J.S. Tsai, Appl. Phys. Lett. 74, 132 (1999)

    Article  ADS  Google Scholar 

  32. YuA Pashkin, Y. Nakamura, J.S. Tsai, Jpn. J. Appl. Phys. 38, 2466 (1999)

    Article  ADS  Google Scholar 

  33. C. Wasshuber, Computational Single-Electronics (Springer-Verlag Wien, New York, 2001), pp. 1–146

  34. V.B. Engelkes, J.M. Beebe, C.D. Frisbie, J. Am. Chem. Soc. 126, 14287 (2004)

    Article  Google Scholar 

  35. H. Zhang, Y. Yasutake, Y. Shichibu, T. Teranishi, Y. Majima, Phys. Rev. B 72, 205441–1 (2005)

    Article  ADS  Google Scholar 

  36. A.Z.-Khosousi, A.-A. Dhirani, Chem. Rev. 108, 4072 (2008)

Download references

Acknowledgements

This work partly supported by JSPS KAKENHI Grant Number 15K13999 and by CREST, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Thi Thu Huong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huong, T.T.T., Matsumoto, K., Moriya, M. et al. Fabrication of resistively-coupled single-electron device using an array of gold nanoparticles. Appl. Phys. A 123, 557 (2017). https://doi.org/10.1007/s00339-017-1171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1171-3

Navigation