Skip to main content
Log in

Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with 68Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with 68Ga NPs (68Ga@ CdTe QDs) were found high enough stable in organic phases, e.g., a human serum, to be reliably used in bioapplications. In vivo biodistribution of the 68Ga@ CdTe QDs nanoconposite was investigated in rats bearing fibro sarcoma tumor after various post-injection periods of time. The 68Ga NPs exhibited a rapid as well as high tumor uptake in a very short period of time (less than 10 min), resulting in an efficient tumor targeting/imaging agent. Meantime, the low lipophilicity of the 68Ga NPs caused to their fast excretion throughout the body by kidneys (as also confirmed by the urinary tract). Because of the short half-life of 68Ga radionuclide, the 68Ga@ CdTe QDs with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.A.J. Fitzpatrick, S.K. Andreko, L.A. Ernst, A.S. Waggoner, B. Ballou, M.P. Bruchez, Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 9, 2736–2741 (2009)

    Article  ADS  Google Scholar 

  2. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biological applications of quantum dots. Biomaterials 28, 4717–4732 (2007)

    Article  Google Scholar 

  3. J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003)

    Article  Google Scholar 

  4. J.K. Jaiswal, S.M. Simon, Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 14, 497–504 (2004)

    Article  Google Scholar 

  5. C. Ding, A. Zhu, Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20–30 (2014)

    Article  Google Scholar 

  6. E. Petryayeva, W.R. Algar, I.L. Medintz, Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 67, 215–252 (2013)

    Article  ADS  Google Scholar 

  7. A. Shamirian, H.S. Afsari, A. Hassan, L.W. Miller, P.T. Snee, In vitro detection of hypoxia using a ratiometric quantum dot-based oxygen sensor. ACS Sens 1, 1244–1250 (2016)

    Article  Google Scholar 

  8. M.E. Åkerman, W.C.W. Chan, P. Laakkonen, S.N. Bhatia, E. Ruoslahti, Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002)

    Article  ADS  Google Scholar 

  9. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004)

    Article  Google Scholar 

  10. N.Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P.D. Smith, A. Gandjbakhche, Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad. Radiol. 12, 313–323 (2005)

    Article  Google Scholar 

  11. H. Xu, M.Y. Sha, E.Y. Wong, J. Uphoff, Y. Xu, J.A. Treadway, A. Truong, E. O’Brien, S. Asquith, M. Stubbins, N.K. Spurr, E.H. Lai, W. Mahoney, Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res. 31, e43 (2003)

    Article  Google Scholar 

  12. X. Gao, L. Yang, J.A. Petros, F.F. Marshall, J.W. Simons, S. Nie, In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005)

    Article  Google Scholar 

  13. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    Article  ADS  Google Scholar 

  14. A.M. Smith, H. Duan, A.M. Mohs, S. Nie, Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226–1240 (2008)

    Article  Google Scholar 

  15. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002)

    Article  ADS  Google Scholar 

  16. R. Bakalova, Z. Zhelev, D. Kokuryo, L. Spasov, I. Aoki, T. Saga, Chemical nature and structure of organic coating of quantum dots is crucial for their application in imaging diagnostics. Int. J. Nanomed. 6, 1719–1732 (2011)

    Article  Google Scholar 

  17. S. Jiang, K.Y. Win, S. Liu, C.P. Teng, Y. Zheng, M.Y. Han, Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5, 3127–3148 (2013)

    Article  ADS  Google Scholar 

  18. Y. Xing, Q. Chaudry, C. Shen, K.Y. Kong, H.E. Zhau, L.W. Chung, J.A. Petros, R.M. O’Regan, M.V. Yezhelyev, J.W. Simons, M.D. Wang, S. Nie, Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007)

    Article  Google Scholar 

  19. A.M. Smith, S. Dave, S. Nie, L. True, X. Gao, Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn. 6, 231–244 (2006)

    Article  Google Scholar 

  20. A. Robe, E. Pic, H.-P. Lassalle, L. Bezdetnaya, F. Guillemin, F. Marchal, Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice. BMC Cancer 8, 111 (2008)

    Article  Google Scholar 

  21. M. Takeda, H. Tada, H. Higuchi, Y. Kobayashi, M. Kobayashi, Y. Sakurai, T. Ishida, N. Ohuchi, In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 15, 145–152 (2008)

    Article  Google Scholar 

  22. A. Liu, S. Peng, J.C. Soo, M. Kuang, P. Chen, H. Duan, Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal. Chem. 83, 1124–1130 (2011)

    Article  Google Scholar 

  23. L.E. Page, X. Zhang, C.M. Tyrakowski, C.T. Ho, P.T. Snee, Synthesis and characterization of DNA-quantum dot conjugates for the fluorescence ratiometric detection of unlabelled DNA. Analyst 141, 6251–6258 (2016)

    Article  ADS  Google Scholar 

  24. O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, Y. Omidi, Impacts of quantum dots in molecular detection and bioimaging of cancer. Bioimpacts 4, 149–166 (2014)

    Article  Google Scholar 

  25. M. Geszke, M. Murias, L. Balan, G. Medjahdi, J. Korczynski, M. Moritz, J. Lulek, R. Schneider, Folic acid-conjugated core/shell ZnS: Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. Acta Biomater. 7, 1327–1338 (2011)

    Article  Google Scholar 

  26. I.B. Bwatanglang, F. Mohammad, N.A. Yusof, J. Abdullah, M.Z. Hussein, N.B. Alitheen, N. Abu, Folic acid targeted Mn:ZnS quantum dots for theranostic applications of cancer cell imaging and therapy. Int. J. Nanomed. 11, 413–428 (2016)

    Google Scholar 

  27. A. SalmanOgli, Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting. Cancer Nanotechnol. 2, 1–19 (2011)

    Article  Google Scholar 

  28. H. Lee, C. Kim, D. Lee, J.H. Park, P.C. Searson, K.H. Lee, Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis. Int. J. Nanomed. 12, 4397–4407 (2017)

    Article  Google Scholar 

  29. S. Li, S. Zhou, Y. Li, X. Li, J. Zhu, L. Fan, S. Yang, Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy. ACS Appl. Mater. Interfaces (2017). doi:10.1021/acsami.7b07267

  30. W. Tao, X. Ji, X. Xu, M. Ariful Islam, Z. Li, S. Chen, P. E. Saw, H. Zhang, Z. Bharwani, Z. Guo, J. Shi, O. Farokhzad, Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. Engl. (2017). doi:10.1002/anie.201703657

  31. F. Khodadadei, S. Safarian, N. Ghanbari, Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 280–285 (2017)

    Article  Google Scholar 

  32. P. Nigam Joshi, S. Agawane, M.C. Athalye, V. Jadhav, D. Sarkar, R. Prakash, Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 78, 1203–1211 (2017)

    Article  Google Scholar 

  33. Y. Qiu, B. Zhou, X. Yang, D. Long, Y. Hao, P. Yang, Novel single-cell analysis platform based on a solid-state zinc-coadsorbed carbon quantum dots electrochemiluminescence probe for the evaluation of CD44 expression on breast cancer cells. ACS Appl. Mater. Interfaces 9, 16848–16856 (2017)

    Article  Google Scholar 

  34. K. Li, C. Xia, B. Wang, H. Chen, T. Wang, Q. He, H. Cao, Y. Wang, Effects of quantum dots on the ROS amount of liver cancer stem cells. Colloids Surf. B Biointerfaces 155, 193–199 (2017)

    Article  Google Scholar 

  35. Z. Fan, S. Zhou, C. Garcia, L. Fan, J. Zhou, pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale 9, 4928–4933 (2017)

    Article  Google Scholar 

  36. S. Kim, Y.T. Lim, E.G. Soltesz, A.M. De Grand, J. Lee, A. Nakayama, J.A. Parker, T. Mihaljevic, R.G. Laurence, D.M. Dor, L.H. Cohn, M.G. Bawendi, J.V. Frangioni, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004)

    Article  Google Scholar 

  37. E.G. Soltesz, S. Kim, R.G. Laurence, A.M. DeGrand, C.P. Parungo, D.M. Dor, L.H. Cohn, M.G. Bawendi, J.V. Frangioni, T. Mihaljevic, Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann. Thorac. Surg. 79, 269–277 (2005)

    Article  Google Scholar 

  38. M.E.G. Soltesz, P.S. Kim, P.S.-W. Kim, B.R.G. Laurence, B.A.M.D. Grand, M.C.P. Parungo, M.L.H. Cohn, P.M.G. Bawendi, M.J.V. Frangioni, Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann. Surg. Oncol. 13, 386–396 (2005)

    Article  Google Scholar 

  39. C.P. Parungo, S. Ohnishi, S.-W. Kim, S. Kim, R.G. Laurence, E.G. Soltesz, F.Y. Chen, Y.L. Colson, L.H. Cohn, M.G. Bawendi, J.V. Frangioni, Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J. Thorac. Cardiovasc. Surg. 129, 844–850 (2005)

    Article  Google Scholar 

  40. V. Poderys, M. Matulionyte, A. Selskis, R. Rotomskis, Interaction of water-soluble CdTe quantum dots with bovine serum albumin. Nanoscale Res. Lett. 6, 1–6 (2010)

    Google Scholar 

  41. N. Abdullah Al, J.-E. Lee, I. In, H. Lee, K.D. Lee, J.H. Jeong, S.Y. Park, Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol. Pharm. 10, 3736–3744 (2013)

    Article  Google Scholar 

  42. J. Wang, P. Jiang, Z. Han, L. Qiu, C. Wang, B. Zheng, J. Xia, Fast self-assembly kinetics of quantum dots and a dendrimeric peptide ligand. Langmuir 28, 7962–7966 (2012)

    Article  Google Scholar 

  43. H. Chen, Z. Wang, S. Zong, P. Chen, D. Zhu, L. Wu, Y. Cui, A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. Nanoscale 7, 15477–15486 (2015)

    Article  ADS  Google Scholar 

  44. C.E. Probst, P. Zrazhevskiy, V. Bagalkot, X. Gao, Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65, 703–718 (2013)

    Article  Google Scholar 

  45. A. Shamirian, H. Samareh Afsari, D. Wu, L.W. Miller, P.T. Snee, Ratiometric QD-FRET sensing of aqueous H2S in vitro. Anal. Chem. 88, 6050–6056 (2016)

    Article  Google Scholar 

  46. R.S. Yang, L.W. Chang, J.P. Wu, M.H. Tsai, H.J. Wang, Y.C. Kuo, T.K. Yeh, C.S. Yang, P. Lin, Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115, 1339–1343 (2007)

    Article  Google Scholar 

  47. M.L. Schipper, Z. Cheng, S.-W. Lee, L.A. Bentolila, G. Iyer, J. Rao, X. Chen, A.M. Wu, S. Weiss, S.S. Gambhir, microPET-Based biodistribution of quantum dots in living mice. J. Nucl. Med. 48, 1511–1518 (2007)

    Article  Google Scholar 

  48. M.L. Schipper, G. Iyer, A.L. Koh, Z. Cheng, Y. Ebenstein, A. Aharoni, S. Keren, L.A. Bentolila, J. Li, J. Rao, X. Chen, U. Banin, A.M. Wu, R. Sinclair, S. Weiss, S.S. Gambhir, Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5, 126–134 (2009)

    Article  Google Scholar 

  49. H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B. Itty Ipe, M.G. Bawendi, J.V. Frangioni, Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007)

    Article  Google Scholar 

  50. M. Sun, G. Sundaresan, P. Jose, L. Yang, D. Hoffman, N. Lamichhane, J. Zweit, Highly stable intrinsically radiolabeled indium-111 quantum dots with multidentate zwitterionic surface coating: dual modality tool for biological imaging. J. Mater. Chem. B 2, 4456–4466 (2014)

    Article  Google Scholar 

  51. D. Bargheer, A. Giemsa, B. Freund, M. Heine, C. Waurisch, G.M. Stachowski, S.G. Hickey, A. Eychmuller, J. Heeren, P. Nielsen, The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein J. Nanotechnol. 6, 111–123 (2015)

    Article  Google Scholar 

  52. D.W. Jonathan, J.K. Steve, M. Saed, D. Sheng, S.W. Jonathan, R. Tina, A. James, J.R. Adam, In vivo SPECT/CT imaging and biodistribution using radioactive Cd 125 m Te/ZnS nanoparticles. Nanotechnology 18, 175103 (2007)

    Article  Google Scholar 

  53. Y. Fazaeli, O. Akhavan, R. Rahighi, M.R. Aboudzadeh, E. Karimi, H. Afarideh, In vivo SPECT imaging of tumors by 198, 199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C 45, 196–204 (2014)

    Article  Google Scholar 

  54. Y. Fazaeli, S. Feizi, A.R. Jalilian, A. Hejrani, Grafting of [64Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl. Radiat. Isot 112, 13–19 (2016)

    Article  Google Scholar 

  55. Y. Fazaeli, Z. Asgari, DTPA-functionalized nano-porous MCM-41 silica: a new potential nanoengineered labeled composite for diagnostic applications. Iran. J. Sci. Technol. Trans. A Sci. 1–8 (2016). doi:10.1007/s40995-016-0047-2

  56. J.C. Bonilla, F. Bozkurt, S. Ansari, N. Sozer, J.L. Kokini, Applications of quantum dots in food science and biology. Trends Food Sci. Technol. 53, 75–89 (2016)

    Article  Google Scholar 

  57. Y. Fazaeli, A. Jalilian, M. Amini, A. Rahiminejad-kisomi, S. Rajabifar, F. Bolourinovin, S. Moradkhani, Preparation and preliminary evaluation of [67 Ga]-tetra phenyl porphyrin complexes as possible imaging agents. J. Radioanal. Nucl. Chem. 288, 17–24 (2011)

    Article  Google Scholar 

  58. B.S. Sekhon, S.R. Kamboj, Inorganic nanomedicine—part 2. Nanomedicine 6, 612–618 (2010)

    Article  Google Scholar 

  59. K.K. Banger, S.A. Duraj, P.E. Fanwick, A.F. Hepp, R.A. Martuch, Synthesis, and structural characterization of [{CH3(C5H4 N)}Ga(SCH2(CO)O)2]–[(4-MepyH)]+, a novel Ga(III) five-coordinate complex. J. Coord. Chem. 56, 307–312 (2003)

    Article  Google Scholar 

  60. S.A. Duraj, A.F. Hepp, R. Woloszynek, J.D. Protasiewicz, M. Dequeant, T. Ren, Synthesis of two new group 13 benzoato–chloro complexes: a structural study of gallium and indium chelating carboxylates. Inorganica Chimica Acta 365, 54–60 (2011)

    Article  Google Scholar 

  61. Y.-P. Tong, Y.-W. Lin, Synthesis and structure of a novel mixed-ligand electroluminescence-relevant complex of gallium(III) with 2-(2′-hydroxylphenyl)benzothiazole and acetate, and a theoretical investigation on effect of ancillary ligand on solid stacking structure, electroluminescent wavelength shift and other changes in photophysical properties compared to its conventional tris-chelate electroluminescence-relevant counterpart. Synth. Metals 160, 1662–1667 (2010)

    Article  Google Scholar 

  62. W. Uhl, A.-C. Fick, T. Spies, G. Geiseler, K. Harms, Gallium–gallium bonds as key building blocks for the formation of large organometallic macrocycles, on the way to a mesoporous molecule. Organometallics 23, 72–75 (2004)

    Article  Google Scholar 

  63. X. Ming Wang, R. Qing Fan, L. Sheng Qiang, W. Qi Li, P. Wang, H. Jie Zhang, Y. Lin Yang, Tunable luminescence from rare 2D Ga(iii)/In(iii) coordination polymers coexisting with three different conjugated system aromatic ligands. Chem. Commun. 50, 5023–5026 (2014)

    Article  Google Scholar 

  64. H.R. Hoveyda, S.J. Rettig, C. Orvig, Coordination chemistry of 2-(2′-hydroxyphenyl)-2-benzoxazole with gallium(III) and aluminum(III): two uncommon Group 13 metal environments stabilized by a biologically relevant binding group. Inorg. Chem. 32, 4909–4913 (1993)

    Article  Google Scholar 

  65. C. Volkringer, T. Loiseau, N. Guillou, G. Ferey, E. Elkaim, A. Vimont, XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). Dalton Trans. (12), 2241–2249 (2009). doi:10.1039/b817563b

  66. D.L. Reger, S.J. Knox, L. Lebioda, Organometallic complexes of gallium stabilized by the dihydrobis(pyrazolyl)borate ligand. Organometallics 9, 2218–2222 (1990)

    Article  Google Scholar 

  67. J. Notni, K. Pohle, J.A. Peters, H. Görls, C. Platas-Iglesias, Structural Study of Ga(III), In(III), and Fe(III) complexes of triaza-macrocycle based ligands with N3S3 donor set. Inorg. Chem. 48, 3257–3267 (2009)

    Article  Google Scholar 

  68. R.J. Motekaitis, A.E. Martell, S.A. Koch, J. Hwang, D.A. Quarless, M.J. Welch, The gallium(III) and indium(III) complexes of tris(2-mercaptobenzyl)amine and tris(2-hydroxybenzyl)amine. Inorg. Chem. 37, 5902–5911 (1998)

    Article  Google Scholar 

  69. A.M. Vălean, S. Gómez-Ruiz, P. Lönnecke, I. Silaghi-Dumitrescu, L. Silaghi-Dumitrescu, E. Hey-Hawkins, When arsine makes the difference: chelating phosphino and bridging arsinoarylthiolato gallium complexes. Inorg. Chem. 47, 11284–11293 (2008)

    Article  Google Scholar 

  70. K. Kowolik, M. Shanmugam, T.W. Myers, C.D. Cates, L.A. Berben, A redox series of gallium(iii) complexes: ligand-based two-electron oxidation affords a gallium-thiolate complex. Dalton Trans. 41, 7969–7976 (2012)

    Article  Google Scholar 

  71. I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, J.M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2, 630–638 (2003)

    Article  ADS  Google Scholar 

  72. Y. Feng, L. Liu, S. Hu, P. Zou, J. Zhang, C. Huang, Y. Wang, S. Wang, X. Zhang, Efficient fluorescence energy transfer system between fluorescein isothiocyanate and CdTe quantum dots for the detection of silver ions. Luminescence 31, 356–363 (2016)

    Article  Google Scholar 

  73. H. Tao, X. Liao, C. Sun, X. Xie, F. Zhong, Z. Yi, Y. Huang, A carbon dots-CdTe quantum dots fluorescence resonance energy transfer system for the analysis of ultra-trace chlortoluron in water. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 136, 1328–1334 (2015). (Part C)

    Article  ADS  Google Scholar 

  74. Y. Xiao, P.E. Barker, Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32, e28 (2004)

    Article  Google Scholar 

  75. J. Kim, B.T. Huy, K. Sakthivel, H.J. Choi, W.H. Joo, S.K. Shin, M.J. Lee, Y.-I. Lee, Highly fluorescent CdTe quantum dots with reduced cytotoxicity-A Robust biomarker. Sens. Bio Sens. Res. 3, 46–52 (2015)

    Article  Google Scholar 

  76. S. Rieger, R.P. Kulkarni, D. Darcy, S.E. Fraser, R.W. Koster, Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev. Dyn. 234, 670–681 (2005)

    Article  Google Scholar 

  77. S.A.O. Gomes, C.S. Vieira, D.B. Almeida, J.R. Santos-Mallet, R.F.S. Menna-Barreto, C.L. Cesar, D. Feder, CdTe and CdSe quantum dots cytotoxicity: a comparative study on microorganisms. Sensors (Basel, Switzerland) 11, 11664–11678 (2011)

    Article  Google Scholar 

  78. L. Yang, Y. Li, Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131, 394–401 (2006)

    Article  ADS  Google Scholar 

  79. D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, W.W. Webb, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2003)

    Article  ADS  Google Scholar 

  80. D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss, A.P. Alivisatos, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871 (2001)

    Article  Google Scholar 

  81. K.C. Weng, C.O. Noble, B. Papahadjopoulos-Sternberg, F.F. Chen, D.C. Drummond, D.B. Kirpotin, D. Wang, Y.K. Hom, B. Hann, J.W. Park, Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 8, 2851–2857 (2008)

    Article  ADS  Google Scholar 

  82. S. Jin, Y. Hu, Z. Gu, L. Liu, H.-C. Wu, Application of quantum dots in biological imaging. J. Nanomater. 2011, 13 (2011)

    Article  Google Scholar 

  83. P. Sun, H. Zhang, C. Liu, J. Fang, M. Wang, J. Chen, J. Zhang, C. Mao, S. Xu, Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir 26, 1278–1284 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Mehraban Pouladi for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Fazaeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazaeli, Y., Zare, H., Karimi, S. et al. Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology. Appl. Phys. A 123, 507 (2017). https://doi.org/10.1007/s00339-017-1125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1125-9

Navigation