Skip to main content
Log in

Process parameters in the manufacture of ceramic ZnO nanofibers made by electrospinning

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanofibers were prepared by electrospinning under different conditions using a solution of poly(vinyl alcohol) and zinc acetate as precursor. A 23 factorial design was made to study the influence of the process parameters in the electrospinning (collector distance, flow rate and voltage), and a 22 factorial design was made to study the influence of the calcination process (time and temperature). SEM images were made to analyze the fiber morphology before and after calcination process, and the images were made to measure the nanofiber diameter. X-ray diffraction was made to analyze the total precursor conversion to ZnO and the elimination of the polymeric carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 14, 353 (2003). doi:10.1002/adma.200390087

    Article  Google Scholar 

  2. X. Liu, C. Chen, Y. Zhao, B. Jia, J. Nanomater. 2013, 1–7 (2013). doi:10.1155/2013/736375

    Google Scholar 

  3. D. Malwal, P. Gopinath, Crit. Rev. Environ. Sci. Technol. (2015). doi:10.1080/10643389.2015.1109913

    Google Scholar 

  4. C.J. Buchko, L.C. Chen, Y. Shen, D.C. Martin, Polymer 40, 7397–7407 (1999)

    Article  Google Scholar 

  5. Md.A. Ali, K. Mondal, C. Singh, B.D. Malhotra, A. Sharma, Nanoscale 7, 7234 (2015). doi:10.1039/C5NR00194C

    Article  ADS  Google Scholar 

  6. J.R. Dees, J.E. Spruiell, J. Appl. Polym. Sci. 18, 1053–1078 (1974). doi:10.1002/app.1974.070180408

    Article  Google Scholar 

  7. P.J. Barham, A.J. Keller, Mater. Sci. 20, 2281–2302 (1985)

    Article  ADS  Google Scholar 

  8. P.W. Gibson, H.L. Shreuder-Gibson, D. Rivin, AIChE J. 45, 190–194 (1999)

    Article  Google Scholar 

  9. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003). doi:10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  10. N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28, 325–347 (2010). doi:10.1016/j.biotechadv.2010.01.004

    Article  Google Scholar 

  11. X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Polymer 43, 4403 (2002). doi:10.1016/S0032-3861(02)00275-6

    Article  Google Scholar 

  12. L.S. Nair, S. Bhattacharyya, J.D. Bender, Y.E. Greish, P.W. Brown, H.R. Allcock, C.T. Laurencin, Biomacromolecules 5, 2212 (2004). doi:10.1021/bm049759j

    Article  Google Scholar 

  13. C.S. Ki, D.H. Baek, K.D. Gang, K.H. Lee, I.C. Um, Y.H. Park, Polymer 46, 5094 (2005). doi:10.1016/j.polymer.2005.04.040

    Article  Google Scholar 

  14. J.S. Lee, K.H. Choi, H.D. Ghim, S.S. Kim, D.H. Chun, H.Y. Kim, W.S. Lyoo, J. Appl. Polym. Sci. 93, 1638 (2004). doi:10.1002/app.20602

    Article  Google Scholar 

  15. X.Y. Geng, O.H. Kwon, J.H. Jang, Biomaterials 26, 5427 (2005). doi:10.1016/j.biomaterials.2005.01.066

    Article  Google Scholar 

  16. C.X. Zhang, X.Y. Yuan, L.L. Wu, Y. Han, J. Sheng, Mats. Eur. Polym. J. 41, 423 (2005). doi:10.1016/j.eurpolymj.2004.10.027

    Article  Google Scholar 

  17. B. Ding, M. Wang, J. Yu, G. Sun, Sensors 9, 1609–1624 (2009). doi:10.3390/s90301609

    Article  Google Scholar 

  18. Ü. Özgür, Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005). doi:10.1063/1.1992666

    Article  ADS  Google Scholar 

  19. C. Klingshirn, Chem. Phys. Chem. 8 782–803 (2007). doi:10.1002/cphc.200700002

    Google Scholar 

  20. S. Wei, M. Zhou, W. Du, Sens. Actuators, B 160, 753–759 (2011). doi:10.1016/j.snb.2011.08.059

    Article  Google Scholar 

  21. J. Lee, D. Bhattacharyya, A.J. Easteal, J.B. Metson, Curr. Appl. Phys. 8, 42 (2008). doi:10.1016/j.cap.2007.04.010

    Article  ADS  Google Scholar 

  22. H. Zhao, H.Y.R. Li, Polymer 47, 3207–3217 (2006). doi:10.1016/j.polymer.2006.02.089

    Article  Google Scholar 

  23. X.M. Sui, C.L. Shao, Y.C. Liu, Appl. Phys. Lett. 87, 113115 (2005)

    Article  ADS  Google Scholar 

  24. R. Pantani, G. Gorrasi, G. Vigliotta, M. Murariu, P. Dubois, Eur. Polym. J. 49, 3471–3482 (2013). doi:10.1016/j.eurpolymj.2013.08.005

    Article  Google Scholar 

  25. K.T. Shalumon, K.H. Anulekha, S.V. Nair, S.V. Nair, K.P. Chennazhi, R. Jayakumar, Int. J. Biol. Macromol. 49, 247–254 (2011). doi:10.1016/j.ijbiomac.2011.04.005

    Article  Google Scholar 

  26. S.-J. Shen, X. Hu, F. Wang, Q.-Y. Ma, M.-F. Gu, Mater. Sci. Eng., C 49, 612–622 (2015). doi:10.1016/j.msec.2015.01.025

    Article  Google Scholar 

  27. X. Yang, C. Shao, H. Guan, X. Li, J. Gong, Inorg. Chem. Commun. 7, 176–178 (2004). doi:10.1016/j.inoche.2003.10.035

    Article  Google Scholar 

  28. R. Siddeheswaran, R. Sankar, M.R. Babu, M. Rathnakumari, R. Jayavel, P. Murugakoothan, P. Sureshkumar, Cryst. Res. Technol. 41, 446–449 (2006). doi:10.1002/crat.200510603

    Article  Google Scholar 

  29. Y. Chang, N. Zhang, M. Zhuang, X. Lu, Mater. Renew. Energy Environ. 1, 124–127 (2013). doi:10.1109/ICMREE.2013.6893629

    Google Scholar 

  30. W. Cui, X. Li, S. Zhou, J. Weng, J. Appl. Polym. Sci. 103, 3105–3112 (2007). doi:10.1002/app.25464

    Article  Google Scholar 

  31. N. Dhanalakshmi, A.K. Lele, J.P. Jog, Mater. Today Commun. 3, 141–148 (2015). doi:10.1016/j.mtcomm.2015.01.002

    Article  Google Scholar 

  32. R.C. Nonato, A.R. Morales, A.F.M. Vieira, S.V.G. Nista, L.H.I. Mei, B.C. Bonse, Appl. Phys. A 122, 1–11 (2016). doi:10.1007/s00339-016-9752-0

    Article  Google Scholar 

  33. M.C. Morris, H.F. McMurdie, E.H. Evans, B. Paretzkin, H.S. Parker, N.C. Panagiotopoulos, Standard X-ray diffraction powder patterns, 1st edn.  (National Bureau of Standards, JCPDS, 1981), p. 78

  34. Y. Nishio, R.S. Manley, Macromolecules 21, 1270–1277 (1988). doi:10.1021/ma00183a016

    Article  ADS  Google Scholar 

  35. S.A. Therona, E. Zussmana, A.L. Yarina, Polymer 45, 2017–2030 (2007). doi:10.1016/j.polymer.2004.01.024

    Article  Google Scholar 

  36. S.V. Fridrikh, J.H. Yu, M.P. Brenner, G.C. Rutledge, Phys. Rev. Lett. 90, 144502 (2003). doi:10.1103/PhysRevLett.90.144502

    Article  ADS  Google Scholar 

  37. D. Sun, C. Chang, S. Li, L. Lin, Nano Lett. 6, 839–842 (2006). doi:10.1021/nl0602701

    Article  ADS  Google Scholar 

  38. J.B. Russell, Química Geral, vol. 1 (Pearson Education do Brasil, Makron Books, São Paulo, 1994)

    Google Scholar 

  39. K.H. Lee, H.Y. Kim, Y.M. La, D.R. Lee, N.H. Sung, J. Polym. Sci. Part B: Poly. Phys. 40, 2259–2268 (2002). doi:10.1002/polb.10293

    Article  ADS  Google Scholar 

  40. C. Chang, K. Limkrailassiri, L. Lin, Appl. Phys. Lett. 93, 123111 (2008). doi:10.1063/1.2975834

    Article  ADS  Google Scholar 

  41. S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Macromolecules 35, 8456 (2002). doi:10.1021/ma020444a

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CAPES (Coordenação de Financiamento de Pessoal de Nível Superior) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato C. Nonato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonato, R.C., Morales, A.R., Rocha, M.C. et al. Process parameters in the manufacture of ceramic ZnO nanofibers made by electrospinning. Appl. Phys. A 123, 92 (2017). https://doi.org/10.1007/s00339-016-0717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0717-0

Keywords

Navigation